Законы Иоганна Кеплера великого философа астронома и математика

Полная энергия

En1

Таким образом, в соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной.

Теорема вириала

В случае кругового движения кинети­ческая энергия в 2 раза меньше по модулю потенциальной. Поэтому

Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела.

При Eпол < 0 тело не может удалиться от центра притяжения на расстояние r < rmax . В этом случае небесное тело движется по эллиптической орбите (планеты Солнечной системы, кометы). Система с отрицательной полной энергией называется гравитационно связанной .

При Eпол = 0 тело движется по параболической траектории. Скорость тела на бесконечности равна нулю.

При Eпол > 0 движение происходит по гиперболической траектории. Тело удаляется на бесконечность, имея запас кинетической энергии.

Первая космическая скорость

Это скорость движения по круговой траектории вблизи поверхности Земли

v1

Это минимальная скорость, которую нужно сообщить телу, чтобы оно преодолело притяжение Земли и стало спутником. Для Земли примерно 7,9 км/с.

Вторая космическая скорость

Это скорость движения по параболической траектории

v2

Она равна минимальной скорости, которую нужно сообщить телу на поверхности Земли, чтобы оно, преодолев земное притяжение, стало искусственным спутником Солнца . Находится из условия равенства нулю полной энергии системы. Для Земли примерно 11,2 км/с.

Третья космическая скорость

Это скорость, при которой тело преодолевает притяжение Солнца

v3

где v – орбитальная скорость планеты, v 2 – вторая космическая скорость для планеты. Для Земли примерно 16,6 км/с.

Задачи:

Звезда и планета обращаются вокруг общего неподвижного центра масс по круговым орбитам. Найдите массу планеты m, если известно, что скорость движения планеты равна v 1 , а скорость движения и период обращения звезды равны v 2 и T соответственно.

Если бы все линейные размеры Солнечной системы были пропорционально сокращены так, чтобы среднее расстояние между Солнцем и Землей стало 1 м, то какова была бы продолжительность одного года? Считайте, что плотность небесных тел при этом не меняется.

Автоматическая станция обращается вокруг планеты Марс с периодом T = 18 ч. Максимальное удаление от поверхности Марса (в апоцентре) a = 25000 км, минимальное (в перицентре) p = 1380 км. По указанным параметрам орбиты станции определите отношение массы Марса к массе Земли. Радиус Марса rм = 3400 км, радиус Земли rз = 6400 км.

Вычислить массу Юпитера, зная, что его спутник Ио совершает оборот вокруг планеты за 1,77 суток, а большая полуось его орбиты 422 тыс. км.

Вычислить параболическую скорость на поверхности Луны, RЛ = 0.27 радиуса Земли, MЛ = 1/81 массы Земли.

Источник

Какой закон дополнил законы кеплера основной закон природы

Три закона движения планет относительно Солнца были выведены эмпирически немецким астрономом Иоганном Кеплером в начале XVII века. Это стало возможным благодаря многолетним наблюдениям датского астронома Тихо Браге.

Первый закон Кеплера . Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

Второй закон Кеплера ( закон равных площадей ). Радиус-вектор планеты за равные промежутки времени описывает равновеликие площади. Другая формулировка этого закона: секториальная скорость планеты постоянна.

Третий закон Кеплера . Квадраты периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит.

Современная формулировка первого закона дополнена так: в невозмущенном движении орбита движущегося тела есть кривая второго порядка – эллипс, парабола или гипербола.

В отличие от двух первых, третий закон Кеплера применим только к эллиптическим орбитам.

Скорость движения планеты в перигелии
где к – средняя или круговая скорость планеты при = . Скорость движения в афелии

Кеплер открыл свои законы эмпирическим путем. Ньютон вывел законы Кеплера из закона всемирного тяготения. Для определения масс небесных тел важное значение имеет обобщение Ньютоном третьего закона Кеплера на любые системы обращающихся тел.

В обобщенном виде этот закон обычно формулируется так: квадраты периодов 1 и 2 обращения двух тел вокруг Солнца, помноженные на сумму масс каждого тела (соответственно 1 и 2) и Солнца ) , относятся как кубы больших полуосей 1 и 2 их орбит:

При этом взаимодействие между телами 1 и 2 не учитывается. Если пренебречь массами этих тел в сравнении с массой Солнца (т.е. 1 << , 2 << ), то получится формулировка третьего закона, данная самим Кеплером:

Третий закон Кеплера можно также выразить как зависимость между периодом обращения по орбите тела с массой и большой полуосью орбиты ( – гравитационная постоянная):

Читайте:  Дикая Природа Великобритании Wild Great Britain 2018

Здесь необходимо сделать следующее замечание. Для простоты часто говорится, что одно тело обращается вокруг другого, но это справедливо только для случая, когда масса первого тела пренебрежимо мала по сравнению с массой второго (притягивающего центра). Если же массы сравнимы, то следует учитывать и влияние менее массивного тела на более массивное. В системе координат с началом в центре масс орбиты обоих тел будут коническими сечениями, лежащими в одной плоскости и с фокусами в центре масс, с одинаковым эксцентриситетом. Различие будет только в линейных размерах орбит (если тела разной массы). В любой момент времени центр масс будет лежать на прямой, соединяющей центры тел, а расстояния до центра масс 1 и 2 тел массой 1 и 2 соответственно связаны следующим соотношением: 1/2 = 2/1. Перицентры и апоцентры своих орбит (если движение финитно) тела также будут проходить одновременно.

Третий закон Кеплера можно использовать, чтобы определить массу двойных звезд.

Источник

Законы Иоганна Кеплера — великого философа, астронома и математика

В своё время, Кеплер на основании анализа наблюдений других учёных, Тихо Браге и Коперника, вывел три закона. Которые дают описание гелиоцентрической орбиты планеты. Основу его соотношений составили опыт и эксперименты.

Считается, что погрешность кеплеровых законом максимум 1%. Между тем, Кеплер не смог сам научно обосновать свои выводы. Более того, можно сказать, что выдвинул он их интуитивно. Впоследствии данные предположения теоретически доказал Исаак Ньютон. Также в дальнейшем их применение было обоснованно классической механикой.

Бесспорно, работы ученого в значительной мере способствовали пониманию внутренней системы движения космических объектов.

Познавать означает сопоставлять воспринятое извне с внутренними идеями и выносить суждение о том, насколько то и другое совпадает.

Первый закон Кеплера

Это эллипсический закон.

В нашей системе планеты осуществляют оборот по эллипсу. К тому же, Солнце находится на одном из фокусов данной кривой.

Форму эллипса и его сходство с окружностью определяют эксцентриситетом. Это выражение сечения конуса в числовой мере. Более того, именно он указывает на степень отклонения от окружности.

Его вычисляют делением промежутка от центра до фокуса эллипса на большую полуось. Если расстояние равно нулю, соответственно эллипс будет являться окружностью.

Открытие и использование закона всемирного тяготения в астрономии является доказательством первого закона Кеплера. Закон всемирного тяготения установил то, что каждый объект во Вселенной притягивает другой объект по определённой линии. Которая, помимо всего прочего, соединяет центры их масс. Но в то же время является пропорциональной массе каждого объекта, и обратно пропорциональной квадрату расстояния между этими объектами. Разработал закон всемирного тяготения Ньютон.

Первый закон Кеплера взаимосвязан с ньютоновскими законами.

Во втором законе Ньютон утверждал и доказывал, что ускорение объекта является пропорциональной равнодействующей всех сил. Которые прилагаются к объекту. Кроме того, ускорение также является обратно пропорциональным массе объекта.

Второй кеплеровский закон

По другому, его называют законом площадей. Он сообщает, что каждая планета движется в определённой плоскости. Которая, к тому же, простирается через центр Солнца. Вдобавок радиус-вектор, объединяющий планету и Солнце, заметает собой равные площади за равные промежутки времени.

В Солнечной системе планеты движутся вокруг Солнца совсем непостоянно. Например, от самой ближней точки орбиты до главной звезды наблюдается большая скорость, чем от самой дальней точки.

Действительно, мы наблюдаем такое явление в начале года. Видимое движение Солнца проходит быстрее, нежели в другое время. Так как Земля в это время расположена на ближнем пункте орбиты. Кстати, её называют перигелий. А прямо противоположную точку, то есть самую отдаленную-афелий.

Третий закон Кеплера

Часто называют его название гармоничный закон. Он подразумевает, что период вращения планеты в квадрате вокруг Солнца относится, как куб большой полуоси орбиты планеты.

По правилам силы гравитации, закон Кеплера не совсем точен. Помимо всего прочего, в нём должна учитываться масса планеты.

Гармоничный закон с учётом закона тяготения актуально применять для измерения массы космического объекта. Но только, если установлены их орбиты.

Источник



Законы Кеплера

Гравитационное взаимодействие проще всего наблюдать на космических объектах, обладающих огромной массой. В окружающей нас повседневности действие гравитации между предметами наблюдать сложно, даже если вес предметов составляет сотни и тысячи килограммов. В микромире силы гравитационного взаимодействия малы настолько, что ими можно пренебречь, потому на первый план выходят другие виды взаимодействий между элементарными частицами и атомами.

Читайте:  Круг радости и добра Здравствуй осени пора

Гравитация удерживает живых существ и предметы на поверхности планеты, определяет характер движения планет вокруг Солнца. Именно гравитационное воздействие определяет тот факт, что планеты удерживаются вокруг своих звезд, а спутники не могут уйти в космическое пространство и продолжат движение по орбите вокруг своей планеты.

Закон всемирного тяготения или как его еще называют, теория гравитации, был открыт именно при наблюдении за планетами Солнечной системы.

Если наблюдать за движением небесных тел с Земли, то может показаться, что все эти тела движутся по сложной траектории. Так, например, древний ученый Птолемей, первооткрыватель законов движения планет, поместил Землю в центр вселенной и предположил, что другие планеты и звезды движутся вокруг Земли по большим и малым орбитам.

Рисунок 1 . 24 . 1 . Условное изображение наблюдаемого движения Марса на фоне неподвижных звезд.

Законы движения планет, установленные Птолемеем никем из исследователей не оспаривалась на протяжении 14 веков и только в середине 16 столетия была заменена Коперником на гелиоцентрическую систему, согласно которой все планеты движутся вокруг Солнца.

На основе гелиоцентрической системы объяснить траектории движения небесных тел стало намного проще. На основании трудов Коперника и наблюдений за движением планет астронома из Дании Браге немецкий астроном Кеплер сформулировал три эмпирических закона движения планет в Солнечной системе.

Первый закон Кеплера

Планеты Солнечной системы движутся по эллиптическим орбитам. В одном из фокусов такой орбиты находится Солнце.

Мы проиллюстрировали первый закон Кеплера рисунком. На нем изображена планета, чья масса меньше массы звезды. Звезда находится в одном из фокусов эллипса, по которому движется планета. Точкой Р мы обозначили ближайшую к звезде траекторию, носящая название перигелия. Точка А – это наиболее удаленная от звезды точка траектории, которая называется афелием. Большая ось эллипса располагается между точками афелии и перигелия.

Рисунок 1 . 24 . 2 . Эллиптическая орбита планеты массой m < < M . a – длина большой полуоси, F и F ‘ – фокусы орбиты.

В Солнечной системе все планеты за исключением Плутона движутся по орбитам, которые близки к круговым.

Второй закон Кеплера, или закон площадей

Радиус-вектор планеты описывает в равные промежутки времени равные площади.

Рисунок 1 . 24 . 3 . Закон площадей – второй закон Кеплера.

Эквивалентом второго закона Кеплера можно считать закон сохранения момента импульса. На рисунке, расположенном выше, изображен вектор импульса тела p → и составляющие его p r → и p ⊥ → . Площадь, заметенная радиус-вектором за малое время Δ t , приближенно равна площади треугольника с основанием r Δ θ и высотой r :

∆ S = 1 2 r 2 ∆ θ или ∆ S ∆ t = 1 2 r 2 ∆ θ ∆ t = 1 2 r 2 ω ; ( ∆ t → 0 ) .

Здесь ω = ∆ θ ∆ t ; ( ∆ t → 0 ) – угловая скорость.

Момент импульса L по абсолютной величине равен произведению модулей векторов p r → и p ⊥ → :

L = r p ⊥ = r ( m v ⊥ ) = m r 2 ω так как v ⊥ = r ω .

Из этих отношений следует:

∆ S ∆ t = L 2 m , ∆ t → 0

Поэтому, если по второму закону Кеплера ∆ S ∆ t = co n s t , то и момент импульса L при движении остается неизменным.

В частности, поскольку скорости планеты в перигелии v P → и афелии v A → направлены перпендикулярно радиус-векторам r P → и r A → из закона сохранения момента импульса следует:

r P v p = r A u A

Третий закон Кеплера

Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит.

Формула третьего закона Кеплера имеет вид:

T 2 a 3 = c o n s t или T 1 2 a 1 3 = T 2 2 a 2 3

Точность, с которой третий закон Кеплера выполняется для всех планет, составляющих Солнечную систему, составляет выше 1 % .

На рисунке изображены две орбиты, по которым небесные тела движутся вокруг звезды. Одна из орбит круговая с радиусом R , а другая – эллиптическая с большой полуосью a . Если R = a , то согласно третьему закону Кеплера периоды обращения планет по таким орбитам будут одинаковы.

Рисунок 1 . 24 . 4 . Круговая и эллиптическая орбиты. При R = a периоды обращения тел по этим орбитам одинаковы.

Третий закон Кеплера

Рисунок 1 . 24 . 5 . Модель законов Кеплера.

Законы Кеплера очень долго были правилами, полученными эмпирически на основе наблюдений за движением небесных тел. Для того, чтобы получить возможность опираться на них в создании рабочих теорий, не хватало теоретического обоснования законов.

Читайте:  Мои впечатления от прочтения рассказа Гранатовый браслет А И Куприна

Таким обоснованием стало открытие закона всемирного тяготения Исааком Ньютоном:

Закон всемирного тяготения:

где M и m – массы Солнца и планеты, r – расстояние между ними, G = 6 , 67 · 10 – 11 Н · м 2 / к г 2 – гравитационная постоянная.

Ньютон был первым из исследователей, кто пришел к выводу о том, что между любыми телами в космосе действуют гравитационные силы, которые и определяют характер движения этих тел. Частным случаем такого взаимодействия является сила тяжести, воздействующая на тела, расположенные на поверхности и вблизи планет.

Для круговых орбит первый и второй закон Кеплера выполняются автоматически, а третий закон утверждает, что T 2

R 3 , где Т – период обращения, R – радиус орбиты. Отсюда можно получить зависимость гравитационной силы от расстояния. При движении планеты по круговой траектории на нее действует сила, которая возникает за счет гравитационного взаимодействия планеты и Солнца:

ω 2 R = 2 π 2 R T 2 .

Свойство консервативности гравитационных сил позволяет ввести понятие потенциальной энергии. Для сил всемирного тяготения удобно потенциальную энергию отсчитывать от бесконечно удаленной точки.

Потенциальная энергия тела массы m , находящегося на расстоянии r от неподвижного тела массы M , равна работе гравитационных сил при перемещении массы m из данной точки в бесконечность.

Математическая процедура вычисления потенциальной энергии тела в гравитационном поле состоит в суммировании работ на малых перемещениях.

Рисунок 1 . 24 . 6 . Вычисление потенциальной энергии тела в гравитационном поле.

Закон всемирного тяготения применим не только к точеным массам, но и к сферически симметричным телам. Работа ∆ A i гравитационной силы F → на малом перемещении ∆ s i → = ∆ r i → есть:

∆ A i = — G M m r i 2 ∆ r i

Полная работа при перемещении тела массой m из начального положения в бесконечность находится суммированием работ Δ A i на малых перемещениях:

В пределе при Δ r i → 0 эта сумма переходит в интеграл. В результате вычислений для потенциальной энергии получается выражение:

E p = A r ∞ = — G M m r

Знак «минус» указывает на то, что гравитационные силы являются силами притяжения.

Если тело находится в гравитационном поле на некотором расстоянии r от центра тяготения и имеет некоторую скорость v , его полная механическая энергия равна

E = E k + E p = m v 2 2 — G M m r = c o n s t

В соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной.

Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела (рис. 1 . 24 . 6 ).

При E = E 1 < 0 тело не может удалиться от центра притяжения на расстояние r > r m a x . В этом случае небесное тело движется по эллиптической орбите (планеты Солнечной системы, кометы).

Рисунок 1 . 24 . 7 . Диаграмма энергий тела массой m в гравитационном поле, создаваемом сферически симметричным телом массой M и радиусом R .

При E = E 2 = 0 тело может удалиться на бесконечность. Скорость тела на бесконечности будет равна нулю. Тело движется по параболической траектории.

При E = E 3 > 0 движение происходит по гиперболической траектории. Тело удаляется на бесконечность, имея запас кинетической энергии.

Первая и вторая космические скорости

Законы Кеплера применимы не только к движению планет и других небесных тел в Солнечной системе, но и к движению искусственных спутников Земли и космических кораблей. В этом случае центром тяготения является Земля.

Первой космической скоростью называется скорость движения спутника по круговой орбите вблизи поверхности Земли.

m v 1 2 R 3 = G M m R 3 2 = g m , отсюда v 1 = G M R 3 = g R 3 = 7 , 9 · 10 3 м / с .

Второй космической скоростью называется минимальная скорость, которую нужно сообщить космическому кораблю у поверхности Земли, чтобы он, преодолев земное притяжение, превратился в искусственный спутник Солнца (искусственная планета). При этом корабль будет удаляться от Земли по параболической траектории.

E = m v 2 2 2 — G M m R 3 = 0 , отсюда v 2 = 2 G M R 3 = 2 g R 3 = 11 , 2 · 10 3 м / с .

Мы проиллюстрировали понятие первой и второй космической скорости рисунком. Если скорость космического корабля равна v 1 = 7 . 9 · 10 3 м / с и направлена параллельно поверхности Земли, то корабль будет двигаться по круговой орбите на небольшой высоте над Землей. При начальных скоростях, превышающих v 1 , но меньших υ 2 = 11 , 2 · 10 3 м / с , орбита корабля будет эллиптической. При начальной скорости v 2 корабль будет двигаться по параболе, а при еще большей начальной скорости – по гиперболе.

Рисунок 1 . 24 . 8 . Космические скорости. Указаны скорости вблизи поверхности Земли. 1 : v = v 1 – круговая траектория; 2 : v 1 < v < v 2 – эллиптическая траектория; 3 : v = 11 , 1 · 10 3 м / с – сильно вытянутый эллипс; 4 : v = v 2 – параболическая траектория; 5 : v > v 2 – гиперболическая траектория; 6 : траектория Луны.

Источник