VI ГИБРИДОЛОГИЧЕСКИЙ МЕТОД Г МЕНДЕЛЯ

VI. ГИБРИДОЛОГИЧЕСКИЙ МЕТОД Г.МЕНДЕЛЯ

Гибридологический метод — это система специальных скрещи­ваний для получения гибридов с целью анализа характера насле­дования признаков.

Мендель объектом своих экспериментов выбрал растение, пол­ностью отвечающее поставленной задаче: оно имело надежную защиту от посторонней пыльцы во время цветения и обладало нормальной плодовитостью.

Суть разработанного Менделем метода состоит из нескольких основных постулатов.

1. Подбор исходных «константно различающихся» родительс­ких пар.

Для скрещивания использовались растения, отличавшиеся не­которыми признаками: например, окраской цветка (у одного рас­тения пурпурная, у другого — белая), длиной стебля (у одного растения около 2 м, у другого — до 60 см) и т. д. В своих экспери­ментах Мендель изучал наследование 7 альтернативных пар при­знаков: окраски цветка, расположения цветков (пазушное или кон­цевое), высоты растений, характера поверхности горошин (глад­кая или морщинистая), окраски горошин (желтая или зеленая) и т. д. В каждом поколении Мендель вел учет альтернативных при­знаков отдельно по каждой паре. До начала экспериментальных скрещиваний Мендель в течение нескольких лет проводил работу на получение «чистых линий», т.е. сортов, постоянно и устойчиво воспроизводящих анализируемый признак. (Термин «чистые линии» возник много позднее, датский генетик — селекционер В. Иоган-сен так назвал группу особей с однородной наследственностью.)

2. Количественный анализ полученных гибридов, отличающих­ся по отдельным признакам от каждой родительской пары.

3. Индивидуальный анализ потомства от каждого скрещивания в ряду поколений.

Революционное новшество данного методического приема зак­лючалось в учете и анализе потомства, полученного путем размно­жения всех без исключения гибридных особей.

4. Применение статистических методов оценивания результатов эксперимента.

Г. Мендель ввел в практику генетического анализа систему за­писей скрещивания, в которой символ Р обозначает родителей (лат. parenta — родители); F — потомков от скрещивания (лат. filii — дети). Позднее стали использовать нижний цифровой индекс при символе F для обозначения последующих поколений. Например, F1 — обозначает потомство от скрещивания родительских форм; F2 — обозначает потомство от скрещивания гибридов первого по­коления и т.д.; символ «х» означает скрещивание особей.

Источник

Особенности гибридологического анализа Менделя

Гибридологи́ческий ана́лиз — один из методов генетики, способ изучения наследственных свойств организма путём скрещивания его с родственной формой и последующим анализом признаков потомства.

В основе гибридологического анализа лежит способность к рекомбинации, то есть перераспределению генов при образовании гамет, что приводит к возникновению новых сочетаний генов.

В законченной форме гибридологический анализ был предложен Г. Менделем. Он же и применил его впервые, проводя скрещивания между растениями гороха. Им были сформулированы непреложные правила проведения гибридологического анализа:

Скрещиваемые организмы должны принадлежать к одному виду.

Скрещиваемые организмы должны чётко различаться по отдельным признакам.

Изучаемые признаки должны стойко воспроизводиться из поколения в поколение.

Необходимы характеристика и количественный учёт всех классов расщепления.

Гибридологический анализ является главным методом генетического анализа.

Сущность гибридологического метода заключается в следующем:

1) для скрещивания выбирают родительские формы, четкоразличающиеся по одной, двум или трем парам контрастных,альтернативных признаков. Например, у одного растения окраска семядолей зрелых семян желтая, у другого — зеленая, форма семян — круглая или морщинистая и т. д. Скрещивание, в кото­ром родители отличаются друг от друга одним признаком, в последующем получило название моногибридного, двумя — дигиб-ридного, многими признаками — полигибридного;

2)выбранные для скрещивания родительские формы должныбыть генетически чистыми. После двухлетнего предварительногоиспытания Мендель отобрал 22 сорта гороха, которые за времяопытов ежегодно высевали и все без исключения сохраняли своюконстантность;

3)Мендель ввел точный математический учет наследованиякаждого отдельного признака. Наблюдению подвергают все безисключения растения в каждом отдельном поколении. Как пра­

вило, для определения наследования признака используют гиб­риды первого, второго и иногда третьего поколений;

4)гибриды и их потомки в каждом из следующих друг задругом поколений не должны обнаруживать заметных наруше­ний в плодовитости;

5)Мендель ввел буквенное обозначение наследственных за­датков (генов) различных признаков. Например, А — ген доми­нантного признака, а — ген рецессивного признака.

Мутационная теория Фриза

Мутационная теория или теория мутаций — раздел генетики, закладывающий основы генетической изменчивости и эволюции.

Однако наиболее известной стала мутационная теория голландского ботаника Хьюго (Гуго) Де Фриза (1901 г.), который ввел современное, генетическое понятие мутации для обозначения редких вариантов признаков в потомстве родителей, которые не имели этого признака.

Де Фриз разработал мутационную теорию на основе наблюдений за широко распространенным сорным растением – ослинником двулетним, или энотерой (Oenothera biennis). У этого растения существует несколько форм: крупноцветковые и мелкоцветковые, карликовые и гигантские. Де Фриз собирал семена с растения определенной формы, высевал их и получал в потомстве 1…2% растений другой формы. В дальнейшем было установлено, что появление редких вариантов признака у энотеры не является мутацией; данный эффект обусловлен особенностями организацией хромосомного аппарата этого растения. Кроме того, редкие варианты признаков могут быть обусловлены редкими сочетаниями аллелей (например, белая окраска оперения у волнистых попугайчиков определяется редким сочетанием aabb).

Положения мутационной теории Де Фриза Современные уточнения
1.Мутации возникают внезапно, без всяких переходов. существует особый тип мутаций, накапливающихся в течение ряда поколений (прогрессирующая амплификация в интронах).
2. Успех в выявлении мутаций зависит от числа проанализированных особей. без изменений
3. Мутантные формы вполне устойчивы. при условии 100%-ной пенетрантности (мутантному генотипу соответствует мутантный фенотип) и 100%-ной экспрессивности (одна и та же мутация проявляется у разных особей в равной степени)
4. Мутации характеризуются дискретностью (прерывистостью); это качественные изменения, которые не образуют непрерывных рядов, не группируются вокруг среднего типа (моды). существуют ликовые мутации, в результате которых происходит незначительное изменение характеристик конечного продукта
5. Одни и те же мутации могут возникать повторно. это касается генных мутаций; хромосомные аберрации уникальны и неповторимы
6. Мутации возникают в разных направлениях, они могут быть вредными и полезными. сами по себе мутации не носят адаптивный характер; только в ходе эволюции, в ходе отбора оценивается «полезность», «нейтральность» или «вредность» мутаций в определенных условиях; при этом «вредность» и «полезность» мутаций зависит от генотипической среды
Читайте:  Пырей выращивание свойства и применение

Современные представления о гене

Ген – это структурная и функциональная единица наследственности живых организмов.

Генотип – это совокупность генов данного организма, которая, характеризует особь.

Геном – это совокупность наследственного материала, заключенного в клетке организма.

Человеческий геном состоит из 23 пар хромосом, находящихся в ядре, а также митохондриальной ДНК. Двадцать две пары аутосом, две половые хромосомы Х и Y, а также митохондриальная ДНК человека содержат вместе примерно 3,1 млрд. пар оснований.

В настоящее время в молекулярной биологии установлено, что гены — это участки ДНК, несущие какую-либо целостную информацию — о строении одной молекулы белка или одной молекулы РНК. Эти и другие функциональные молекулы определяют развитие, рост и функционирование организма.

В то же время каждый ген характеризуется рядом специфических регуляторных последовательностей ДНК , таких как промоторы, которые принимают непосредственное участие в регулировании проявления гена. Регуляторные последовательности могут находиться как в непосредственной близости от открытой рамки считывания, кодирующей белок, или начала последовательности РНК, как в случае с промоторами (так называемые cis-регуляторные элементы, англ. cis-regulatory elements), так и на расстоянии многих миллионов пар оснований (нуклеотидов), как в случае с энхансерами, инсуляторами и супрессорами (иногда классифицируемые как trans-регуляторные элементы, англ. trans-regulatory elements). Таким образом, понятие гена не ограничено только кодирующим участком ДНК, а представляет собой более широкую концепцию, включающую в себя и регуляторные последовательности.

Роль нуклеиновых кислот в хранении и передачи генетической информации

Нуклеиновые кислоты, полинуклеотиды-сложные высокомолекулярные соединения, имеющиеся во всех клетках живых организмов и являющиеся материальными носителями наследственной информации.

Биологическая роль Нуклеиновые кислоты заключается в хранении, реализации и передаче наследственной информации, «записанной» в молекулах Нуклеиновые кислоты в виде последовательности нуклеотидов — т. н. генетического кода. При делении клеток — митозе — происходит самокопирование ДНК — её репликация, в результате чего каждая дочерняя клетка получает равное количество ДНК, заключающей программу развития всех признаков материнской клетки. Реализация этой генетической информации в определённые признаки осуществляется путём биосинтеза молекул РНК на молекуле ДНК (транскрипция) и последующего биосинтеза белков с участием разных типов РНК (трансляция).

Биологическая роль митоза

Оно состоит в том, что митоз обеспечивает наследственную передачу признаков и свойств в ряду поколений клеток при развитии многоклеточного организма. Благодаря точному и равномерному распределению хромосом при митозе все клетки единого организма генетически одинаковы.

Митотическое деление клеток лежит в основе всех форм бесполого размножения как у одноклеточных, так и у многоклеточных организмов. Митоз обусловливает важнейшие явления жизнедеятельности: рост, развитие и восстановление тканей и органов и бесполое размножение организмов.

Источник

ОСОБЕННОСТИ ГИБРИДОЛОГИЧЕСКОГО МЕТОДА МЕНДЕЛЯ

Закономерности наследования признаков впервые установил: Грегор Иоганн Мендель (1822—1884). Начиная с 1856 г. в течё-‘ ние восьми лет он проводил свои знаменитые, опыты по скрещи­ванию разных сортов гороха. В 1865 г. на заседании Общества ^тествоиспьзсгателей в г. Брно Мендель выступил дважды с до­кладами о результатах проведенных опытов, и в 1866 г. в трудах этого Общества была напечатана его работа «Опыты над расти­тельными гибридами». Академик Н. И. Вавилов писал: «Малень­кая книжка Менделя является, бесспорно, одной из замечатель­нейших биологических работ, на которой должен учиться каж­дый биолог, каждый селекционер и исследователь. Она ценна для нас как блестящий метод исследования важнейшего явления жизни — наследственности».

Работа Менделя была непонята его современниками и прошла в свое время незамеченной. Биология в тот период не была готова к восприятию его идей. Только в 1900 г. три ботаника (Г. де Фриз в Голландии, Э. Чермак в Австрии и К. Корренс в Германии) на основании проведенных ими опытов почти одно­временно пришли к законам, установленным Менделем 35 лет назад. Ими была обнаружена работа Менделя, и с тех пор откры­тие Менделя стало достоянием широкой научной общественнос­ти. Закономерности, установленные Менделем, были подтверж­дены на тысячах растительных и животных объектов.

Современное учение о наследственности покоится на откры­тиях Менделя, и исторически возникновение генетики неизбеж­но связывается с его именем. Мендель разработал свой гибридо­логический метод исследования, названный впоследствии зако­ном Менделя, который позволил ему установить четкие закономерности в наследовании признаков.

Сущность гибридологического метода заключается в следующем:

1) для скрещивания выбирают родительские формы, четко различающиеся по одной, двум или трем парам контрастных, альтернативных признаков. Например, у одного растения окраска семядолей зрелых семян желтая, у другого — зеленая, форма семян — круглая или морщинистая и т. д. Скрещивание, в кото­ром родители отличаются друг от друга одним признаком, в последующем получило название моногибридного, двумя — дигиб-ридного, многими признаками — полигибридного;

2) выбранные для скрещивания родительские формы должны быть генетически чистыми. После двухлетнего предварительного испытания Мендель отобрал 22 сорта гороха, которые за время опытов ежегодно высевали и все без исключения сохраняли свою константность;

3) Мендель ввел точный математический учет наследования каждого отдельного признака. Наблюдению подвергают все без исключения растения в каждом отдельном поколении. Как пра­вило, для определения наследования признака используют гиб­риды первого, второго и иногда третьего поколений;

4) гибриды и их потомки в каждом из следующих друг за другом поколений не должны обнаруживать заметных наруше­ний в плодовитости;

5) Мендель ввел буквенное обозначение наследственных за­датков (генов) различных признаков. Например, А — ген доми­нантного признака, а — ген рецессивного признака.

При гибридологическом анализе довольно часто используют реципрокное скрещивание. Реципрокным называют два скрещи­вания, в одном из которых доминантным признаком отличается отцовская форма, в другом — материнская: например, в одном скрещивании отец черной масти, мать красной, в другом, наобо­рот, мать черной масти, отец красной.

Одна из главных причин, обеспечивших успех в работе Мен­деля, — удачный выбор объекта исследования. Горох — однолет­нее растение, имеет много сортов с четко различающимися при­знаками, легко культивируется, строгий самоопылитель, стро­ение его цветка таково, что почти невозможен занос чужой пыльцы, но при необходимости можно производить искусствен­ное опыление.

При анализе закономерностей наследования признаков поль­зуются некоторыми терминами и понятиями, введенными уже после переоткрытия законов Менделя. Датский ученый В. Ио-ганнсен в 1909 г. ввел понятия «ген», «генотип» и «фенотип». Ген — наследственный задаток. Генотип — совокупность наслед­ственных задатков (генов) организма. Фенотип — совокупность всех признаков и свойств организма, доступных наблюдению и анализу. Английский зоолог У. Бетсон ввел понятия «гомозиго­та» и «гетерозигота». Гомозиготными называют особей, получив­ших от отца и матери одинаковые наследственные задатки (гены) по какому-то конкретному признаку. Гетерозиготными называют особей, получивших от отца и матери разные гены. Таким образом, по генотипу особи могут быть гомозиготными (АА или аа) или гетерозиготными (Аа). Фенотип формируется под влиянием генотипа и условий среды. Фенотип можно выра­зить по определенному признаку такими словами, как рогатый или комолый, высокий или низкий, черный или красный. На­следственные задатки (гены) альтернативных признаков были названы аллелями. Аллели (аллельные гены) расположены в одина­ковых точках (локусах) парных гомологичных хромосом. Один аллельный ген (А или а) зигота получает с яйцеклеткой от мате­ри, другой (А или а) — со сперматозоидом от отца.

Читайте:  Чего боятся крысы 8212 с помощью каких средств можно избавится от грызунов

При изучении наследования признаков составляются схемы скрещивания; скрещивание обозначают знаком умножения (х), который ставится между родителями. При написании схем роди­тельские формы обозначают буквой Р (от слова parentes — роди­тели), женский пол обозначают знаком ? (символ планеты Вене­ры), мужской — (^(символ планеты Марс). Рядом со знаками $ и </ проставляют генотип родителя, а ниже записывают типы производимых ими гамет (половых клеток). Затем в результате соединения гамет родителей определяют генотип потомства. По­лученное в результате скрещивания потомство называют гибри­дами и обозначают буквой F (от слова filii — дети), внизу буквы ставят цифру, указывающую, к какому поколению оно относит­ся, например, Fi — гибрид первого поколения, F2 — второго, F3 — третьего поколения и т. д. Мендель вел учет наследования отдельно по каждой паре альтернативных признаков, отвлекаясь от других различий между родительскими формами. На основа­нии опытов Мендель установил три закона: единообразия гибри­дов первого поколения, расщепления, независимого наследова­ния признаков, а также правило чистоты гамет.

Источник



Гибридологический метод Г. Менделя

На протяжении долгой истории научной (в большей степени натурфилософской) мысли преобладающими были метафизические представления о наследственности и изменчивости. Уже в далекие времена, когда начался период одомашнивания различных животных, предпринимались попытки улучшить их полезные качества. Решая эти задачи, человечество интуитивно опиралось на биологические закономерности наследования. Начиная с трудов Гиппократа, Аристотеля, Платона, других древнегреческих врачей и философов, появляются первые теоретические объяснения явлению наследственности. В XVIII и XIX столетиях изучением проблемы наследования занимались такие выдающиеся ботаники и врачи, как И.Кельейтер, Т. Найт, Ш.Ноден, П. Мопертюи и другие. Было показано, что признаки родителей, в том числе и нежелательные, например болезни, передаются через половые клетки; описано преобладание у гибрида одного признака над другим. Однако основоположником науки генетики, открывшим главные законы наследования признаков, является гениальный чешский ученый Г. Мендель.

Главная заслуга Менделя состоит в разработке и использовании гибридологического метода для анализа явлений наследования.

До открытий Менделя признавалась теория так называемой слитной наследственности. Суть этой теории состояла в том, что при оплодотворении мужское и женское «начало» перемешивались, «как краски в стакане воды», давая начало новому организму. Мендель заложил фундамент представлений о дискретном характере наследственного вещества и о его распределении при образовании половых клеток у гибридов.

Основные результаты семилетних экспериментов по изучению законов наследования Мендель опубликовал в бюллетене общества естествоиспытателей в г. Брюнне (ныне г. Брно, Чехия) в 1866 г. Исследование называлось «Опыты над растительными гибридами». Однако эта публикация не привлекла внимания современников. Только через 35 лет, в 1900 г., когда законы наследования были вновь открыты сразу тремя ботаниками — К. Корренсом, Э. Чермаком и другими) они получили всеобщее признание. К настоящему времени правильность законов Менделя подтвержден на громадном числе растительных и животных организмов, в том числе и на человеке. Открытие Менделем законов, отражают процесс передачи наследственной информации и принципа дискретности (генной детерминации наследственных признаков), явилось первым экспериментальным доказательством существования наследственности как реального материального явления.

Гибридологический метод Г. Менделя

Гибридологический метод — это система специальных скрещиваний для получения гибридов с целью анализа характера наследования признаков.

Мендель объектом своих экспериментов выбрал растение, полностью отвечающее поставленной задаче: оно имело надежную защиту от посторонней пыльцы во время цветения и обладало нормальной плодовитостью. Такими растениями были различные сорта самоопыляющегося посевного гороха (Pisum sativum).

Суть разработанного Менделем метода состоит из нескольких основных постулатов.

1. Подбор исходных «константно различающихся» родительских пар.

Для скрещивания использовались растения, отличавшиеся некоторыми признаками: например, окраской цветка (у одного растения пурпурная, у другого — белая), длиной стебля (у одного растения около 2 м, у другого — до 60 см) и т.д. В своих экспериментах Мендель изучал наследование 7 альтернативных пар признаков: окраски цветка, расположения цветков (пазушное или концевое), высоты растений, характера поверхности горошин (гладкая или морщинистая), окраски горошин (желтая или зеленая) и т.д. В каждом поколении Мендель вел учет альтернативных признаков отдельно по каждой паре. До начала экспериментальных скрещиваний Мендель в течение нескольких лет проводил работу на получение «чистых линий», т.е. сортов, постоянно и устойчиво воспроизводящих анализируемый признак. (Термин «чистые линии» возник много позднее, датский генетик — селекционер В.Иогансен так назвал группу особей с однородной наследственностью.)

2. Количественный анализ полученных гибридов, отличающихся по отдельным признакам от каждой родительской пары.

3. Индивидуальный анализ потомства от каждого скрещивания в ряду поколений.

Революционное новшество данного методического приема заключалось в учете и анализе потомства, полученного путем размножения всех без исключения гибридных особей.

4. Применение статистических методов оценивания результатов эксперимента.

Г.Мендель имел в практику генетического анализа систему записей скрещивания, в которой символ P обозначает родителей (лат. parenta — родители); F — потомков от скрещивания (лат. filii — дети). Позднее стали использовать нижний цифровой индекс при символе F для обозначения последующих поколений. Например, F — обозначает потомство от скрещивании родительских форм; F — обозначает потомство от скрещивания гибридов первого поколения и т.д.; символ «x» означает скрещивание особей.

Читайте:  Ранне цветущие растения цветы

Моногибридное скрещивание

В первом поколении, полученном от скрещивания родительских форм, имеющих различия только по одной паре признаков (например, гладкие и морщинистые горошины; высокие и низкие стебли; окрашенные и белые цветы), были получены гибриды, у которых проявился признак только одного из родителей (только гладкие горошины, только высокие растения, только окрашенные цветы и т.д.). Никаких переходных (смешанных) форм растений по другим признакам не было обнаружено. Признак одного из родителей, проявляющийся у гибрида, Мендель назвал доминантным (от лат. dominare — господствовать, властвовать), а парный, не проявившийся признак был назван рецессивным (от лат. гесеssus — уступающий, отступающий назад) признаком. В последующем явление преобладания у гибридов первого поколения признака одного из родителей стали называть законом единообразия гибридов первого поколения, или первым законом Менделя.

Анализ потомков гибридов первого поколения, полученных путем самоопыления, позволил обнаружить, что наряду с доминантными формами вновь появляются растения с признаками, отсутствовавшими в поколении гибридов первого поколения, причем в строгих числовых отношениях. Таким образом, родительские признаки у гибридов первого поколения не исчезали и не смешивались. Мендель предположил, что эти признаки присутствовали у гибридов первого поколения в скрытом виде, но не проявлялись, почему он и назвал их рецессивными признаками. Оказалось, что по всем парам изученных признаков особи с доминантными и рецессивными признаками появлялись в соотношении 3:1. Появление доминантных и рецессивных форм в потомстве, полученном от самоопыления гибридов первого поколения, и составляет сущность чакона расщепления, или второго закона Менделя.

На основании полученных результатов Мендель пришел к следующим выводам:

1. Так как исходные родительские сорта не давали расщепления, у гибрида первого поколения (с доминантным признаком) должно быть два наследственных задатка (в современной терминологии — два аллеля).

2. Гибриды первого поколения содержат по одному задатку, полученному от каждого из родительских растений через половые клетки.

3. Наследственные задатки у гибридов первого поколения не сливаются, а сохраняют свою индивидуальность.

Для подтверждения своих выводов Мендель предпринял анализирующее, или возвратное, скрещивание — скрещивание гибрида первого поколения с рецессивной родительской особью. В потомстве от этого вида скрещивания он, как и ожидал, получил как доминантные, так и рецессивные формы в соотношении 1:1. Это подтвердило, что отдельные наследственные задатки при образовании половых клеток попадают в различные гаметы. Таким образом, гибрид первого поколения образует два типа половых клеток: клетки, содержащие наследственный задаток, определяющий доминантный признак, и клетки, содержащие наследственный задаток, определяющий рецессивный признак. В этом смысле каждая половая клетка «чистая», т.е. содержит один, и только один, аллель из пары (правило чистоты гамет). Распределение контрастных наследственных задатков в соотношении 1:1 является всеобщим биологическим законом, лежащим в основе всех других закономерностей наследования признаков.

В настоящее время особь, которая имеет два различающихся аллеля в каждом локусе гомологичных хромосом и которая, следовательно, образует два типа половых клеток, называется гетерозиготой (от греч. heteros — другой, различный + zygotos — соединение, пара). Особь, в каждой гомологичной хромосоме которой находятся идентичные аллели и которая, следовательно, образует только один тип половых клеток, называется гомозиготой (от греч. homos — тот же самый + zygotos — соединение, пара). Используя буквенную символику, введенную Г.Менделем для обозначения каждого наследственного задатка (для доминантного — прописная буква «А», для рецессивного — «а» строчная), можно изобразить схему опытов.

На рис. V.1 показано, что все потомки от данного вида скрещивания унаследовали признак только одного из родителей, т. е. они единообразны. Поскольку каждый из родителей образовал только один тип гамет (только «А» или только «а»), все потомки оказались гетерозиготами.

На рис.V.2 видно, что, судя по внешнему виду, на каждые три растения с доминантным признаком приходится одна особь с рецессивным признаком, в то время как по наследственным потенциям наблюдается иное расщепление — 1АА : 2Аа : 1аа.

Рис. V.I. Схема, иллюстрирующая закон единообразия гибридов первого поколения. Все потомство — гетерозиготы

Действительно, при дальнейшем размножении потомков от скрещивания гибридов первого поколения (Аа) Мендель наблю­дал, что рецессивные особи (аа) и одна треть доминантных (АА) не дают расщепления признаков в потомстве. Однако 2 /з доминан­тных потомков (Аа) вновь образуют при самоопылении доминан­тные и рецессивные формы в соотношении 3:1.

Существенным результатом скрещивания двух гетерозигот яви­лось появление внешне сходных растений (с доминантными при­знаками, например, с гладкими горошинами; окрашенными цвет­ками и т.д.), в то же время различавшихся по наследственным задаткам (АА и Аа). Оказалось, что организмы с одинаковыми при­знаками могут иметь различную генетическую конституцию.

Рис. V.2. Схема, иллюстрирующая закон расщепления.

Таким образом, стали различать расщепление по внешнему про­явлению признаков, которое соответствует отношению 3:1 (рас­щепление по фенотипу), и расщепление по наследственным задат­кам, выражаемое отношением 1:2:1 (расщепление по генотипу). Тер­мины «генотип» и «фенотип» были предложены В.Иогансеном в 1909 г. Генотип — это наследственная конституция особи как сово­купность генов организма. Термин «генотип» часто используется для обозначения генетической конституции особи применительно к анализу наследования конкретного признака. Фенотип (от греч. phaino — являю + typos — образец) — совокупность признаков организма (анатомических, физиологических, биохимических, психических и т.д.). Термин «фенотип» часто используется для обозначения конкретного признака (внешнего или внутреннего) как результата проявления конкретного гена.

На основании полученных результатов можно заключить, что при моногибридном скрещивании двух гетерозиготных особей расщепление в потомстве по фенотипу соответствует двум классам признаков и может быть выражено отношением 3:1; расщепление по генотипу соответствует отношениям 1:2:1, т.е. возникает три генотипических класса.

Наследственные задатки, определяющие парные альтернативные признаки (обозначенные Менделем латинскими буквами А, а), впоследствии стали называть аллельной парой, а отдельный конкретный фактор — аллелью. В настоящее время аллель определяют как одно из альтернативных состояний одного и того же гена.

Источник