Поступление и трансформация азота в белковые вещества

Азот в жизни растений

Азот — химический элемент, инертный газ без цвета и запаха, открыт французским химиком Лавуазье во второй половине XVIII в., является основным компонентом атмосферного воздуха (78,08%). Название означает «нежизненный», так как не поддерживающий горение и дыхание. Однако, дальнейшие исследования показали огромную роль азота в жизни растений и всего органического мира.

Азот входит в состав:

  • белков, пептидов и аминокислот, которые являются составной частью протоплазмы и ядра растительных клеток;
  • нуклеиновых кислот (ДНК и РНК) — носителей наследственных свойств живых организмов и участвующих в обмене веществ;
  • молекул хлорофилла;
  • ферментов;
  • фосфатидов;
  • гормонов;
  • большинство витаминов.

Азотное питание растений

Все ферменты — белковые вещества, поэтому при недостаточном снабжении растений азотом синтех ферментов замедляется, что приводит к нарушениям в процессах биосинтеза, обмена веществ, в итоге, к снижению урожая.

Регулирование азотного питания растений, можно влиять на урожайность сельскохозяйственных культур с учетом других факторов жизни. Максимальный урожай достигается при достаточном обеспечении растений всеми условиями их роста. Академик Д.Н. Прянишников писал, что вся история земледелия в Западной Европе говорит о том, что главным условием, определяющим среднюю высоту урожаев в разные эпохи, была степень обеспеченности сельскохозяйственных растений азотом.

Оптимальное азотное питание способствует синтезу белковых веществ, растения образуют мощные стебли и листья с интенсивной зеленой окраской. Мощный ассимиляционный аппарат позволяет накапливать большее количество продуктов фотосинтеза, повышая урожайность и, как правило, его качество.

Одностороннее избыточное питание азотом, особенно во второй половине вегетационного периода, приводит к задержке созревания растений; образуется большая вегетативная масса, урожай репродуктивных органов но не успевает сформироваться.

Недостаток азота приводит к сильному замедлению роста растений. Прежде всего сказывается на развитии вегетативной массы: листья становятся мелкими, светло-зелеными, раньше желтеют, стебли тонкие, слабо ветвятся. Снижается формирование репродуктивных органов, урожай резко снижается. Азотное голодание у злаковых культур приводит к ослаблению кущения, уменьшается количество зерен в колосе, снижается белковость зерна.

Содержание азота в растениях

По химическому составу, на долю азота в растениях приходится 0,5-5,0% воздушно-сухой массы, основное количество приходится на семенах. Содержание белка четко коррелирует с количеством азота в растениях. В вегетативных органах содержание азота ниже: в соломе бобовых 1,0-1,4%, в соломе злаковых 0,45-0,65%. Еще меньше азота накапливается в корне-, клубнеплодах и овощных культурах: картофель (клубни) 0,32%, сахарная свекла (корни) 0,24%, капуста 0,33% сырого вещества.

Содержание азота в растениях зависит от возраста, почвенно-климатических условий, питательного режима, в частности обеспеченности питательными элементами.

Таблица. Содержание белка и азота в семенах различных культур, % 1

Культура Белок Азот
Соя 29 5,8
Горох 20 4,5
Пшеница 14 2,5
Рис 7 1,2

Содержание азота в молодых вегетативных органах выше. По мере старения азотистые вещества мигрируют в появляющиеся листья и побеги.

Таблица. Содержание азота в вегетативной массе зерновых культур по фазам развития, % на воздушно-сухое вещество 2

Культура Фаза развития
кущение трубкование колошение цветение
Озимая пшеница 5,0-5,4 3,0-4,5 2,1-2,5 2,0-2,4
Яровая пшеница 4,5-5,5 3,0-4,4 2,5-3,0 1,8-2,5
Овес 5,5-5,9 2,9-3,9 2,2 1,3-1,7

Поступление и трансформация азота в белковые вещества

Темпы накопления органических веществ растениями опережают поступление азота и других питательных веществ. Происходит «ростовое разбавление» содержания питательных элементов. При созревании отмечается выраженное передвижение азота в репродуктивные органы, где они накапливаются в виде запасных белков.

В основном азот поступает в растения в нитратной и аммонийно форме, но также способны усваивать некоторые растворимые органические соединения, например, мочевину, аминокислоты, аспарагин.

Из поступающих из почвы в растения соединений азота только аммиак непосредственно используется для синтеза аминокислот. Нитраты и нитриты включаются в синтез аминокислот только после восстановления в тканях растений.

Редукция нитратов до аммиака начинается уже в корнях с помощью флавиновых металлоферментов:

Превращение азота в растениях

При избытке, часть нитратов поступает в неизменном видо в листья, где восстанавливается по той же схеме.

Образование аминокислот (аминирование) происходит в результате взаимодействия аммиака с кетокислотами: пировиноградной, щавелевоуксусной, кетоглутаровой и др., образующиеся в процессе окисления углеводов. Аминирование регулируется ферментами. Так, при взаимодействии пировиноградной кислоты с аммиаком образуется аланин:

Аналогично взаимодействие аммиака с щавелевоуксусной кислотой приводит к образованию аспарагиновой кислоты (СООН-СН2-СНNН2-СООН), с кетоглутаровой кислотой — глутаминовая кислота (СООН-СН2-СН2-СНNН2-СООН).

В аминокислоты азот входит в виде аминогруппы (—NH2). Процессы образования аминокислот происходит в корнях и в надземной части растений.

Опыты с использованием меченых атомов показывают, что уже через несколько минут после подкормки растений аммиачными удобрениями, в тканях могут обнаруживаться аминокислоты, синтезированные из внесенного в подкормку аммиака. При этом первой образующеся аминокислотой является аланин, затем аспарагиновая и глутаминовая кислоты.

Нитратный азот может накапливаться в растениях в больших количествах, без причинения им вреда. Аммиак в свободном виде в тканях содержится в незначительных количествах. Его накопление, особенно при недостатке углеводов, приводит к аммиачному отравлению растений.

Однако растения имеют способность связывать избыток свободного аммиака: его часть вступает во взаимодействие с синтезированными аспарагиновой и глутаминовой аминокислотами, образуя соответствующие амиды — аспарагин и глутамин:

Образование аспарагина

Образование глутамина

Образование аспарагина и глутамина позволяет растениям защитить себя от аммиачного отравления и создать резерв аммиака, кроме того, амиды участвуют в синтезе белков.

В 1937 г. биохимиками А.Е. Браунштейном и М.Г. Крицманом была открыта реакция переаминирования, заключающаяся в переносе аминогруппы с аминокислоты на кетокислоту с образованием других амино- и кетокислот. Реакция катализируется ферментами трансаминазами или аминоферазами.

Так, присоединение к пировиноградной кислоте аминной группы от глутаминовой кислоты, приводит к образованию аланина и кетоглутаровой кислоты:

Благодаря переаминированию синтезируется значительное число аминокислот. В растениях наиболее легко переаминируются глутаминовая и аспарагиновая кислоты.

Аминокислоты являются составными частями полипептидов и белков. В построении белковых молекул участвуют 20 аминокислот, аспарагин и глутамин в различных соотношениях и пространственной ориентации, что обуславливает огромное разнообразие белков. В настоящее время известно более 90 аминокислот, около 70 из них присутствуют в растениях в свободном виде и не входят в состав белков.

Растения синтезируют аминокислоты, которые не могут образовываться в организме человека и высших животных, но являются незаменимыми для их жизни. К ним относятся: лизин, гистидин, фенилаланин, триптофан, валин, лейцин, изолейцин, треонин и метионин.

На долю небелкового органического азота в растениях приходится 20-26% от общего количества. В неблагоприятных условиях, например, при дефиците калия или недостаточном освещении, количество небелковых азотистых соединений возрастает.

В тканях растений белки находятся в динамичном равновесии с небелковыми азотистыми соединениями. Одновременно с синтезом белков и аминокислот протекает процесс их распада: отщепление аминогруппы от аминокислоты с образованием кетокислот и аммиака. Этот процес называется дезаминированием. Высвобождающаяся кетокислота используется растениями для синтеза углеводов, жиров и иных веществ; аммиак повторно вступает в реакцию аминирования других кетокислот, образуя новые аминокислоты, при его избытке — аспарагин и глутамин.

Таким образом, весь цикл превращений азотистых соединений в растениях начинается (аминирование) и заканчивается (дезаминирование) аммиаком.

«Аммиак есть альфа и омега в обмене азотистых веществ у растений».

Д.Н. Прянишников

За все время вегетации растения синтезируется большое количество белковых соединений, причем в разные периоды роста обмен азотистых веществ происходит по-разному.

При прорастании семян, клубней, луковиц наблюдается распад запасных белков. Продукты распада расходуются на синтез аминокислот, амидов и белков в тканях проростков до выхода их на поверхность почвы. В Затем, по мере формирования корневой системы и листового аппарата, синтез белков протекает за счет минерального азота, поглощаемого из почвы.

В молодых растениях преобладает синтез белков. В процессе старения растений начинает преобладать распад белков. Продукты распада из стареющих органов мигрируют в молодые, интенсивно растущие органы, где используются для синтеза новых белков в точках роста. По мере созревания растений и формирования репродуктивных органов, белковых веществ распадаются в вегетативных частей, продукты распада перемещаются в репродуктивные органы, где используются для образования запасных белков. К этому моменту поступление азота в растения из почвы существенно замедляется или полностью прекращается.

Особенности аммонийного и нитратного питания растений

В конце XIX в. в агрономической науке ведущую роль занимала теория нитратного питания растений, роль аммиака как источника минерального питания отрицалась.

Причинами этому послужили:

  • опыты в водных культурах: отмечалось хорошее развитие растений на фоне нитратных солей, на фоне аммонийных солей развитие было плохим;
  • открытие процесса нитрификации в почве; что стало основанием считать: при внесении в почву аммонийных удобрений они переходят в нитратную форму, которая усваивается растениями;
  • внесение чилийской селитры (NaNO3) заметно повышало урожайность культур.

Однако в конце века П.С. Коссович в опытах со стерильными культурами показал, что растения могут также усваивать аммиачный азот без окисления в нитратную форму. К такому же выводы пришел и французский исследователь Мазе в 1900 г. После этого были изучены условия и особенности питания аммонийными и нитратными формами азота. Фундаментальные исследования по этому вопросу провел Д.Н. Прянишников. Он показал, что эффективность использования различных форм азота зависит от реакция среды: в нейтральной реакции лучше поглощается аммонийный азот, при кислой — нитратный.

В начальные фазы роста существенное значение имеют биологические особенности. При прорастании семян с небольшим запасом углеводов, например, у сахарной свеклы, а, следовательно, органических кетокислот, избыточное поступление аммония в растения оказывает негативное действие. Аммонийный азот не успевает использоваться для синтеза аминокислот, накапливается в тканях растения и вызывает их отравление. В данном случае используют нитратные формы азотных удобрений, так как они также накапливаться в тканях растений, но не причиняют вреда. Семена и посевной материал с большим запасом углеводов, например, картофель, используют аммонийный азот для синтеза аминокислот без ограничений. Поэтому для таких культур аммонийная и нитратная формы в начальные стадии роста равноценны.

На поглощение нитратного и аммонийного азота влияет обеспеченность другими элементами питания. Повышенное содержание в почве калия, кальция и магния способствует поглощению аммония. При нитратном питании значение имеет обеспеченность растений фосфором и молибденом. Дефицит молибдена приводит к задержке восстановления нитратов до аммиака и способствует накоплению нитратов в тканях растений.

Учитывая, что аммонийная форма азота при поступлении в растения может сразу использоваться для синтеза аминокислот, тогда как нитратная только после восстановления до аммиака, аммоний более энергетически экономной формой.

Источник

РАСТЕНИЯ, ОБРАЗУЮЩИЕ (ПРИ ОПРЕДЕЛЕННЫХ УСЛОВИЯХ) НИЗШИЕ СОЕДИНЕНИЯ АЗОТА

2. РАСТЕНИЯ, ОБРАЗУЮЩИЕ (ПРИ ОПРЕДЕЛЕННЫХ УСЛОВИЯХ) НИЗШИЕ СОЕДИНЕНИЯ АЗОТА

Явления нитрогенеза и отравления животных вследствие высокого содержания соединений азота известны в отношении лишь немногих растений: свеклы, дуба, крапивы. Можно думать, что в зависимости от особенностей почвенного состава многие растения могут также содержать значительный процент солей азотной кислоты.

Повышенное содержание соединений азотной (азотистой) кислоты в растениях чаще наблюдается во время засухи и в результате внесения в почву больших количеств азотистых удобрений.

Минимальная летальная доза азотистокислого натрия для крупного рогатого скота устанавливается в 0,15—0,17 г на 1 кг веса животного. Свиньи более чувствительны к этой соли: летальная доза для них равна 70—75 мг на 1 кг веса. Следовательно, нужны очень небольшие количества корма с содержанием азотистых соединений, чтобы возникло отравление, например, свиней.
Свекла (Beta L.)
Дуб (Quercus L.)
Крапива (Urtica L.)

Токсикология ядовитых растений. — М.: Сельскохозяйственной литературы, журналов и плакатов . И.А. Гусынин . 1962 .

Смотреть что такое «РАСТЕНИЯ, ОБРАЗУЮЩИЕ (ПРИ ОПРЕДЕЛЕННЫХ УСЛОВИЯХ) НИЗШИЕ СОЕДИНЕНИЯ АЗОТА» в других словарях:

СВЕКЛА (BETA L.) — см. Ботанические сведения. Семейство Маревых (Chenopodiaceae). Свекла обыкновенная (Beta vulgaris L.). Токсикологическое значение. Отравления свеклой при неправильном приготовлении ее наблюдаются у свиней. В 1934 г. описан случай массового… … Токсикология ядовитых растений

КРАПИВА (URTICA L.) — см. Семейство Крапивных (Urticaceae). Наиболее распространены: Крапива двудомная (Urtica dioica L.). Мужские и женские цветки на разных растениях. Крапива жгучая (U. urens L.). Мужские и женские цветки на одном растении. Описан случай заболевания … Токсикология ядовитых растений

ДУБ (QUERCUS L.) — см. Семейство Буковых (Fagaceae). Дуб черешчатый (Quercus robur L., Q. pedinculata Ehrh.). Дерево с желудями на длинных ножках, лопастными листьями. Отравления наблюдаются при кормлении ветками дуба. Причиной отравления является содержание в… … Токсикология ядовитых растений

Горная порода — (Rock) Горная порода это совокупнность минералов, образующая самостоятельное тело в земной коре, вследстие природных явлений Группы горных пород, магматические и метаморфические горные породы, осадочные и метасоматические горные породы, строение… … Энциклопедия инвестора

Источник

Азот в жизни растений. Его роль, недостаток и способы восстановления

Роль азота в жизни растений

Один из важнейших макроэлементов. Без его участия невозможно развитие растений. Он отвечает за обмен веществ. При этом находится в составе всех белков, цитоплазмы, ядер клеток, аминокислот, хлорофилла, гормонов, витаминов и других соединений. Все это – азот.

Роль азота в жизни растений

Растениям он необходим постоянно, так как отвечает за все процессы питания. Поэтому его недостаток задевает жизненно важные функции.

Особенно нуждаются в этом элементе молодые растения во время активного роста стеблей и листьев. Они содержат наибольшее количество азота. Но с развитием, его доля снижается.

Роль азота в жизни растения заключается еще в том, что он больше других элементов влияет на качество и количество урожая. Поэтому, чтобы вырастить богатый урожай нужно с ранней весны позаботиться о достатке азота.

Азот в природе

Азот в природе

Растения используют азот в виде солей аммония (NH4 + ), и нитратов (NO3 — ):

  • Аммоний называют «долгим» азотом, так как он неподвижен в почве, не вымывается и долго превращается в нитратную форму. Больше необходим на ранних стадиях развития растения.
  • Нитраты — «быстрый» азот. Быстро действуют, но легко вымываются. В большинстве случаев азот поступает в растения именно в виде нитратов.

Обе формы полезны при разных условиях: когда нужно быстро подкормить растение, используют нитраты. А когда необходимо поступление азота только на определенной фазе роста, вносят аммонийные удобрения.

Нитраты не задерживаются в почве и могут вымываться со склонов, выноситься с урожаем:

  1. В водопроницаемых почвах (песчаных) вымывание азота происходит намного интенсивней, чем в почвах с низкой фильтрационной способностью (глинистых). Для уменьшения вымывания воды и соответственно азота, вносят перегной. Он имеет хорошую влагоемкость, склеивает частички почвы и заполняет собой пространство между ними.
  2. Также происходит потеря азота при денитрификации, когда почвенные бактерии перерабатывают нитрат, используя его для поддержания своей жизнедеятельности. В результате он становится недоступным.
  3. Так как азот накапливается в разных частях растения, то при уборке, уносится с урожаем. Разные культуры по-разному его используют. В зависимости от вида, в среднем выносится 100-200 кг/га органических веществ, содержащих азот.
  4. Также он выносится при улетучивании мочевины, когда уреаза превращает ее в аммиак.

Нитрат азота

Азот атмосферы – это единственный природный источник азота. В газообразном состоянии находится в неограниченном количестве. Но его могут использовать лишь некоторые растения. Свойство переводить такой азот в форму, доступную для усвоения имеют азотфиксирующие бактерии. Такие бактерии находятся на корнях бобовых (соя, люцерна, клевер). Поэтому для природного восполнения уровня азота, их высаживают на местах, где в будущем будут произрастать культурные растения. И после уборки бобовых, азот остается в почве.

Азот в гидропонике

В питательном растворе для гидропоники важно наличие обеих форм азота. С помощью контроля их соотношения, можно добиться стабильного значения рН. Потому что, если раствор имеет только аммоний – это приведет к понижению уровня рН раствора и его подкислению. И наоборот – при перевесе нитратов, повысится рН вокруг корней и раствор станет щелочным. В этом случае, если значение рН не соответствует нужному уровню, растение перестанет получать необходимые элементы для нормального развития. При значении рН 6,8 растения одинаково усваивают обе формы азота.

При одинаковых пропорциях аммоний больше понижает рН раствора, чем нитратный азот повышает его. Поэтому для стабилизации уровня рН аммония используют намного меньше, чем нитратов (в соотношении 1:3).

Еще одна важность правильного соотношения NH4 + и NO3 — в том, что повышенное содержание аммония приводит к дефициту кальция и магния.

Соотношение нитратов и аммония очень важно. Но оно может меняться в зависимости от сорта растения, температуры раствора, стадии роста, освещения:

    1. Если при образовании плодов у некоторых растений в питательном растворе присутствует аммоний – это снижает урожайность и может привести к заболеваниям. Поэтому лучше использовать аммоний только на начальной стадии развития. 2. При повышении температуры увеличивается потребление сахара и уменьшается обмен веществ аммония с ним. Поэтому при повышенных температурах недопустимо содержание высокого уровня аммония. 3. Наоборот, при низкой температуре нитраты транспортируются медленнее, поэтому использование их в растворе негативно сказывается на росте растения.

Нехватка азота у растений

Чтобы понять, как выглядит растение с недостатком азота N2 не нужно иметь специальных знаний. Главный признак – это прекращение роста и общая слабость. Растение с нормальным его содержанием выглядит здоровым, с насыщенным зеленым цветом листьев. Даже на начальной стадии азотное голодание может привести к потере половины урожая.

Недостаток азота у растений проявляет себя по таким признакам:

Признаки нехватки азота

  • растут слабые, короткие побеги;
  • недостаток листьев, а те, что есть, теряют яркую окраску;
  • новые листья мелкие, узкие, бледно-зеленые с красноватыми оттенками, рано опадают;
  • пожелтение жилок с расположенными возле них частями листа. Сначала желтеть начинают нижние, старые листья;
  • слабое ветвление деревьев;
  • слабое цветение;
  • плоды вырастают мелкие, рано осыпаются.

Как восполнить дефицит азота у растений

В почве

Азот для подкормки растений вносят в виде: калиевой, натриевой селитры, аммиачных, органических и других удобрений. Они повышают урожайность практически всех культур.

Почву удобряют ранней весной и в начале лета. За это время растение наиболее активно развивается. Своевременная подкормка стимулирует обмен веществ и активизирует рост.

Положительно удобрения влияют после весенних заморозков и понижений температуры. А вносить их после середины лета не рекомендуется. Это продлит рост, и существенно снизит зимостойкость растений. Также возможно накопление нитратов в плодах.

В гидропонике

Для гидропоники используют минеральные удобрения. Обычные органические удобрения (навоз) не используют, потому что они могут привести к загниванию. Это происходит из-за того, что органические удобрения расщепляются организмами, которые находятся только в почве. А удобрения для гидропоники содержат все готовые для использования элементы.

Раньше, чтобы получить питательный раствор, нужно было самому смешивать химические реактивы. Но это очень сложно. Сейчас раствор для гидропоники можно приготовить самому с помощью готовых удобрений:

Plagron hydro a b

Минеральное удобрение Plagron Hydro A/B 5 л. Двухкомпонентные азотсодержащие удобрения идеально подходят для профессионалов с большим опытом выращивания. Они содержат все необходимые питательные вещества даже для самых капризных растений. Используют эти подкормки во время развития, цветения и плодоношения. Они предназначены для гидропонного метода выращивания.

Power roots plagron

Стимулятор корнеобразования Plagron Power Roots 1 л. Это удобрение обеспечивает рост сильной, развитой корневой системы. В результате увеличивается усвоение питательных веществ, ускоряется рост молодых побегов. Используется во время вегетации и после пересадки для укрепления иммунитета. Подходит для любого способа выращивания.

Flora gro

Минеральное удобрение FloraGro 500 мл. Стимулирует активное развитие и укрепление корневой системы за счет обеспечения растения главными элементами. Используется на стадии вегетации для гидропонного способа, выращивания в почве, субстратах.

Проращивание семян

Увлекательное приключение под названием выращивание растений в домашних условиях, причем, не столь важно каких именно растений – будь то цветы.

Черенкование растений

Черенкование растений – популярный и доступный вариант получения новых кустов без потери сортовых характеристик. Нюансы есть, но выполнить его под силу даже начинающим садоводам

Виды удобрений для растений

Отвечая на вопрос, что такое удобрения, нужно сказать, что это необходимые для любых растений питательные вещества, повышающие плодородность земли.

Роль удобрений в жизни растений

Удобрение почвы – ключевой этап, который не стоит пропускать, если есть желание собрать богатый урожай высокого качества.

Методы защиты растений от болезней

Растения, как и любые живые организмы, подвержены заболеваниям и поражению паразитами. Растениеводы не перестают разрабатывать методы защиты растений от вредителей и болезней.

Лучшие удобрения для растений

Для правильного развития растений в земле должны быть все необходимые микро- и макроэлементы в подходящих пропорциях.

Искусственное освещение для растений

Свет для любого растения, наряду с питанием и влагой — это жизнь. Световая энергия превращается растением в необходимые для жизни и развития углеводы.

Влияние удобрений на растения

Если из раза в раз сажать в почву те или иные культуры, не заботясь о поддержании плодородия грунта, уже очень скоро можно заметить, как стремительно падает урожайность.

  • Интернет магазин ООО «АгроДом»
  • Страна: Россия
  • E-mail: [email protected]
  • Телефон: 8 (800) 555–42–84
  • Мы работаем: пн-пт 9:00–23:00; сб 10:00–19:00; вс 12:00-20:00

Узнайте первым о предстоящих акциях и скидках. Мы не рассылаем спам и не передаем email третьим лицам

Источник



Узнайте больше азотфиксирующих растений – не только бобовые, но облепиха и русская олива!

«Бобовые — далеко не единственные растения, которые фиксируют азот. Знаете ли вы, что лох серебристый (русская олива), ива и облепиха — все члены семейства Elaeagnus, вырабатывают собственный азот так же эффективно, как и любая бобовая культура», — пишет в своей статье на канадском портале www.grainews.ca Юэн Эванс.

«Ива мирзинолистная (волчья ива или волчья лоза), благодаря азотфиксирующим бактериям в корневых клубеньках, могут фиксировать азота на единицу площади столько же, сколько и люцерна. Опавшие листья и ветви волчьей лозы также стебли вносят значительный вклад в продуктивность азотного цикла.

Интенсивный инвазивный рост лоха серебристого (русской оливы) и облепихи объясняется наличием азотфиксирующих клубеньков. Способность ольхи успешно колонизировать бедные почвы происходит по той же причине.

В Северной Европе в 16 веке было принято сажать саженцы ольхи рядом с молодыми елями. Люди тогда не знали почему, но видели, что ели росли намного быстрее и больше в присутствии ольхи. Теперь известно, что ольха подкармливает своей «утечкой азота» соседние ели. Если вы когда-либо собирали чернику в лесу, то, наверное, примечали: лучшие и самые крупные ягоды черники можно найти на кустах под ольхой.

Ризобиальные бактерии естественным образом существуют в почве в виде многих типов и штаммов, вступая в симбиотические отношения с растениями.

Но следует знать, что не все ризобиальные бактерии одинаково хороши для фермеров. Некоторые штаммы и виды клубеньковых бактерий фактически паразитируют и крадут энергию у своих хозяев, в том числе, у бобовых культур.

Только определенные виды клубеньковых бактерий приносят пользу. Поэтому, когда вы сажаете урожай бобовых, стоит приобрести инокулянт, предназначенный для определенной культуры (люцерны, гороха, бобов, клевера, чечевицы или сои). А после покупки соответствующего рекомендуемого штамма нодулирующих бактерий, держите инокулянт в прохладе и используйте его с семенами бобовых как можно скорее, так как вы имеете дело с очень капризными к условиям окружающей среды бактериями, которые могут отмирать за несколько дней».

Источник

Читайте:  Правила того что нельзя делать на природе правила