Математическая пропорция в природе

Математическая красота или золотое сечение в природе

Кроме того, что золотое сечение – это геометрическая пропорция, это ещё и неразрешимый спор о вере (или неверии) в математическую обусловленность красоты, совершенства, идеалов, искусства, музыки, природы и науки. Да, в общем, всего сущего.

Интересная история эта началась примерно за 500 лет до нашей эры. Древнегреческому философу, математику и ученому, Пифагору (570 – 495 до н.э.) удалось выявить общность пропорций между египетскими гробницами, храмами, статуями. Решение геометрической формулы «подсказал» зодчий Хесир, изображенный на деревянной доске в гробнице своего имени. Он держит в руках измерительные приборы с записанными на них пропорциями золотого деления. Термин «золотое сечение» принадлежит Да Винчи, а до него оно называлось золотым делением.

Золотое деление — это такая пропорция отрезков, при которой меньший из них относится к большему так же, так больший к сумме двух отрезков. А если ещё короче, то меньшая часть относится к большей, как большая к целому. Математически это числа 0,6 (меньшее в большему) и 1,62 (большее к меньшему). Например, пересечения прямых в пятиконечной звезде формируют именно такие отрезки. Каждый завиток улитки отвечает закону золотого сечения. Увеличение каждого шага её спирали равномерно. Архимед, увидев эту закономерность, даже вывел уравнение спирали. Цикорий выбрасывает каждый последующий отросток, на котором он формирует листочек, немного меньше предыдущего, и их соотношения тоже равны 0,6 или 1,6. Даже листочки у него подчинены этому же закону. Длина хвоста ящерицы относится к её телу как 62 к 38. И даже яйцо птицы содержит такие же пропорции. Вот вам и отгадка.

Так мы вплотную подошли к человеку. Здесь все становится еще интереснее. Древним ваятелям был известен закон золотых пропорций в человеческом теле. Линия талии делит тело четко в соотношении 38% (от пупка до макушки) и 62% (от талии до ступней ног) по отношению к росту. Причем соотношения прочих частей тела человека тоже имеют такие пропорции. Например, отношение кисти к предплечью или всего предплечья вместе с кистью к длине плеча. В лице мы находим всё то же золотое сечение. Высота от макушки до линий бровей относится к линии лица от бровей до подбородка как 38 к 62, линия нос-губы к линии губы-подбородок также равна 38 к 62. Немецкий профессор Цейзинг в 1955 году опубликовал работу, в которой привел измерения двух тысяч человеческих тел и заключил, что пропорции золотого сечения являются среднестатистическими, то есть закономерными. Он исследовал греческие статуи, амфоры, архитектурные памятники, растения, животных, и даже музыку, а также стихотворные размеры. Полученные данные легли в основу его следующего труда «Золотое деление как основной морфологический закон в природе и искусстве».

В чем же магия золотого сечения? Почему ей подчинено всё, что мы видим вокруг себя? Ответ прост. Форма, в основе которой лежит симметрия и принцип золотого сечения, наиболее приятна для зрительного восприятия, она вызывает чувство гармонии, завершенности, ощущение прекрасного. Золотое сечение называют «универсальным проявлением структурной гармонии».

Законом золотого сечения во многом объясняется, почему некоторые люди нам кажутся красивыми, а внешний вид других отталкивает.

Интересно, что пропорции женского тела немного отличаются от мужских. Соотношение частей мужского тела несколько ближе к пропорциям золотого сечения и составляет 13:8, то есть 1,625. Тогда как женское тело имеет соотношение 1,6. При этом отношение объема талии к груди и бедрам в женской фигуре должно составлять не более 0.7. Такие, кстати параметры, у Венеры Милосской: 86-69-93, а также у современных признанных красавиц.

Источник



Гармоническая пропорция или мера красоты, которую создала природа

Если мы смотрим на красивый пейзаж, то наш взгляд захватывает весь образ сразу. Затем мы обращаем внимание на детали: высокие горы и их «снежные шапки», причудливые формы облаков. Все выглядит гармоничным, все взаимосвязано, и это даёт нам чувство умиротворения, чувство прекрасного.

Можно ли определить меру красоты? С математической точки зрения, бесспорно. Арифметика даёт понятие о гармонии, которая и проявляется в безукоризненной красоте благодаря принципу Золотого сечения.
Золотое сечение – это пропорциональное деление отрезка на неравные части, но при этом весь отрезок так относится к большей части, как самая большая часть относится к меньшей; или меньший отрезок так относится к большему, как больший ко всему a:b = b:c или с:b = b:а.

Золотое сечение – иррациональное число, оно равно приблизительно

Примеры золотого сечения в природе

Если измерить расстояние от кончика подбородка до верхней линии бровей и от верхней линии бровей до макушки, то получим 1:1,618.
Расстояние от кончика подбородка до верхней линии бровей и от верхней линии бровей до макушки равно 1:1,618.
Высота лица / ширина лица
Центральная точка соединения губ до основания носа / длина носа.
Высота лица / расстояние от кончика подбородка до центральной точки соединения губ. Ширина рта / ширина носа.
Ширина носа / расстояние между ноздрями.
Расстояние между зрачками / расстояние между бровями.
Если внимательно посмотреть на указательный палец, сразу можно найти в нем формулу золотого сечения.
Каждый палец нашей руки состоит из трех фаланг. Сумма двух первых фаланг пальца в соотношении со всей длиной пальца и дает число золотого сечения (исключением является большой палец).
Соотношение между средним пальцем и мизинцем равно числу золотого сечения. Также нужно отметить, что у большинства людей расстояние между концами расставленных рук равно росту.

В ящерице мы можем разглядеть приятные для нашего глаза пропорции – длина ее хвоста так относится к длине остального тела, как 1 к 1,618.

5

Совершенна форма стрекозы тоже полностью повторяет законы золотой пропорции: отношение длины хвоста и корпуса равно отношению общей длины к длине хвоста.
Самым удивительным в золотом сечении является то, что оно может рассматриваться как естественное явление в природе. Гармоничная пропорция проявляется в расположении ветвей вдоль стволов деревьев, прожилок в листьях. У улиток, которые обладают раковинами, раковина растет в форме логарифмической спирали, которая точно соответствуют «золотой пропорции».

Источник

Урок математики по теме "Пропорция вокруг нас". 6-й класс

Назад Вперёд

Тип урока: урок обобщения

Оборудование: компьютер, интерактивная доска.

I. Организационный момент:

1) сообщение темы урока (слайд 1);

2) сообщение целей и задач урока.

  1. Что называют отношением двух чисел?
  2. Что показывает отношение двух чисел?
  3. Что такое пропорция?
  4. Как называются члены этой пропорции?
  5. Каким основным свойством обладают члены пропорции?
  6. Какие две величины называют прямо пропорциональными? (привести примеры прямо пропорциональных величин).
  7. Какие две величины называют обратно пропорциональными? (примеры).

III. Из истории пропорции. (слайды 2-5)

Слово “пропорция” происходит от латинского слова proportio, означающего соразмерность, определенное соотношение частей между собой. Пропорции используют с древности при решении разных задач в математике.

Ещё в древней Греции математики использовали такой аппарат, как ПРОПОРЦИЯ.

Пропорцией называют равенство отношений двух или нескольких пар чисел или величин.

В Вавилоне с помощью пропорций рисовали планы древних городов. На рисунке изображен найденный при раскопках план древнего вавилонского города Ниппура. Когда ученые сравнили результаты раскопок города с этим планом, оказалось, что он сделан с большой точностью.

IV. Практическое применение пропорций. (слайд 6-7)

Математика применяется практически во всех сферах жизни человека. И в повседневной жизни мы используем математические навыки, в том числе и пропорцию.

1. Архитектура (слайды 8-11)

При постройке храма в честь богини Дианы римляне взяли пропорцию, которой отличаются стройные женщины: толщина колоны составила лишь 1/8 ее высоты. Благодаря этому колонны казалась выше, чем она была на самом деле,как раз за счет уменьшения толщины. В архитектуру вошли оба вида колонн, сохраняющие одна мужскую, другая женскую пропорции в отношениях между основанием и высотой.

Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамонасвидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании.

1. На строительство дома идет 4 тыс. штук кирпича. Сколько тысяч штук кирпича необходимо для строительства 15 таких же домов.

2. Для перевозки песка при строительстве потребовалось 14 автомашин грузоподъемностью 4,5 т. Сколько потребуется автомашин грузоподъемностью 7 т для перевозки этого же песка?

2. Кулинария (слайды 12-13)

Понятие пропорции используется в кулинарии. Когда мы готовим какое-либо блюдо, мы стараемся использовать то количество продуктов, которое указано в поварской книге. Это делается для того, чтобы не испортить блюдо. Если мы возьмём больше соли, то пересолим, а если меньше, то будет не вкусно. Ещё пропорция позволяет рассчитать количество продуктов для приготовления одного и того же блюда для разного числа гостей.

3. Для приготовления варенья из 2 кг крыжовника необходимо 3 кг сахара. Сколько кг сахара необходимо для приготовления варенья из 4,4 кг крыжовника.

4. При сушке масса яблок изменилась с 20 кг до 18,2 кг. На сколько % уменьшилась масса яблок при сушке?

3. Медицина(слайды 14-16)

В медицинской практике врачи следят за тем, сколько и когда надо давать лекарства больному. В правильных дозах лекарство даёт лечебный эффект, в меньших – оно бесполезно, а в больших – приносит вред. При изготовлении лекарств тоже соблюдаются пропорции. Здесь необходима точность, так как при нарушении пропорций, составляющих лекарство ингредиентов, может получиться не лекарство, а яд.Отношения и пропорции используется также в аптеках при изготовлении лекарств и лечебных напитков. Чтобы изготовить лекарственный препарат надо точно знать, сколько частей приходится на какую-либо часть.

Читайте:  Wallpaper Engine Живые обои для рабочего стола

5. Для лекарственного отвара ромашки на 100 г кипятка необходимо 20 г сухой ромашки. Сколько г ромашки необходимо для 500г отвара.

6. Больному прописан курс лекарства, которое нужно принимать по 250 мг два раза в день в течение 7 дней. В одной упаковке лекарства содержится 10 таблеток по 125 мг. Какое наименьшее количество упаковок понадобится на весь курс лечения.

4. Химия (слайды 17-19)

Заслуженное место заняла теория пропорций при решении задач по химии.

Например. Какова процентная концентрация раствора, полученного растворением 5 г поваренной соли в 45 г воды?

7. В 2,4 л воды растворили 100 г соли. Какова концентрация полученного раствора?

8. Имеется 90 г 80% уксусной эссенции. Какое наибольшее количество 9% столового уксуса из нее можно получить?

5. Технология (слайды 20-23)

На уроках технологии мы также используем пропорцию. Когда мы хотим сшить какую-либо вещь меньшего или большего размера, мы уменьшаем или увеличиваем выкройку до нужного нам размера. Например, выкройка фартука на себя и на куклу. Размеры элементов кукольного фартука отличаются от соответствующих размеров моего фартука в одно и тоже число раз.

9. Краеобметочная машина 0,6 м ткани обрабатывает за 2,16 мин. Сколько метров можно обметать за 1,44 мин?

10. На изготовление детского платья идет 1,2 м. Сколько необходимо ткани на платье для взрослых, если расход на него на 40 % больше.

6. Физика.(слайды 24-25)

С глубокой древности люди пользовались различными рычагами. Весло, лом, весы, ножницы, качели, тачка и т.д. – примеры рычагов. Выигрыш, который дает рычаг в прилагаемом усилии, определяется пропорцией, где M и m – массы грузов, а L и l – “плечи” рычага.

Решите задачи

11. По правилу рычаганайти М, если l=2 м, L=8 м, m=4 кг.

12. В городе Жуковском на авиа-шоу МАКС проходят показательные полёты самолётов. Такому самолёту-истребителю, как МИГ-29 на 3 часа полётов требуется около 7,5 тонн керосина. Сколько тонн керосина потребуется МИГ-29 на 7 часов полётов?

7. Моделирование.(слайды 26-27)

13. Длина модели автомашины 42см.Какова длина автомобиля, если размеры его уменьшены в 10000 раз.

14. На модель парусника идет 60 см ткани. Сколько м ткани необходимо для изготовления трех таких же парусника.

8. География. (слайды 28-30)

В географии также применяют пропорцию – масштаб. Масштабом называют отношение длины отрезка на карте или плане к длине соответствующего отрезка на местности. Масштаб показывает во сколько раз расстояние на плане меньше, чем указанное расстояние на самом деле.

15. Найдите расстояние от Москвы до Северного полюса, если на карте это расстояние – 3,5 см, а М 1:100000000.

16. Найти расстояние на карте между городами Ростов –на –Дону и Москвой, если расстояние между ними 1200 км, а М 1:50000000.

V. Сообщения учеников о применении пропорции.

9. Изобразительное искусство. (слайды 30-37)

10. Биология.(слайды 38-39)

11. Музыка.(слайды 40-41)

12. Литература.(слайды 42-44)

VI. Заключение .(слайд 45)

С глубокой древности люди используют математический аппарат в повседневной жизни. Одним из них является пропорция. Она используется, начиная с приготовления пищи и заканчивая произведениями искусства, такими как скульптура, живопись, архитектура, а также в живой природе.

Источник

Математика в природе: примеры

Порой кажется, что наш мир прост и понятен. На самом деле это великая загадка Вселенной, сотворившей такую совершенную планету. А может, её создал тот, кто наверняка знает, что делает? Над этим вопросом трудятся величайшие умы современности.

математика в природе

Они каждый раз приходят к выводу, что невозможно сотворить все то, что мы имеем, без Высшего разума. Какая необыкновенная, сложная и в то же время простая и непосредственная наша планета Земля! Окружающий мир удивителен своими правилами, формами, красками.

Законы природы

Первое, на что можно обратить внимание на нашей огромной и удивительной планете, — это осевая симметрия. Она обнаруживается во всех формах окружающего мира, а также является основным принципом красоты, идеальности и пропорциональности. Это не что иное, как математика в природе.

Понятие «симметрия» означает гармонию, правильность. Это свойство окружающей действительности, систематизирующее фрагменты и превращающее их в единое целое. Ещё в древней Греции начали впервые замечать признаки этого закона. Например, Платон считал, что красота появляется исключительно вследствие симметрии и соразмерности. В действительности, если посмотреть на предметы пропорциональные, правильные и завершённые, то наше внутреннее состояние будет прекрасным.

Законы математики в живой и неживой природе

Давайте взглянем на любое существо, например самое совершенное — человека. Мы увидим строение тела, которое с обеих сторон выглядит одинаково. Ещё можно перечислять множество образцов, таких как насекомые, животные, морские обитатели, птицы. Каждый вид имеет свой окрас.

радуга в небе

Если присутствует какой-нибудь узор или рисунок, он, как известно, отражается зеркально относительно центровой линии. Все организмы созданы благодаря правилам мироздания. Такие математические закономерности прослеживаются и в неживой природе.

Если обращать внимание на все явления, такие как смерч, радуга, растения, снежинки, то можно обнаружить в них много общего. Относительно оси симметрии листок дерева делится пополам, и каждая часть будет отражением предыдущей.

что общего в математике и природе

Еще если взять в качестве примера смерч, который возвышается вертикально и имеет вид воронки, то его тоже можно условно разделить на две абсолютно одинаковые половинки. Можно встретить явление симметрии в смене дня и ночи, времён года. Законы окружающего мира — это математика в природе, которая имеет свою совершенную систему. На неё опирается вся концепция создания Вселенной.

Радуга

Мы нечасто задумываемся над явлениями природы. Пошёл снег или дождь, выглянуло солнышко или грянул гром — привычное состояние меняющейся погоды. Рассмотрим разноцветную дугу, которую обычно можно обнаружить после выпадения осадков. Радуга в небе — удивительное явление природы, сопровождающееся видимым только человеческому глазу спектром всех цветов. Это случается за счёт прохождения лучей солнца через уходящую тучу. Каждая дождинка служит призмой, которая обладает оптическими свойствами. Можно сказать, что любая капля является маленькой радугой.

математические закономерности

Проходя через водную преграду, лучи меняют свой изначальный цвет. Всякий поток света имеет определённую длину и оттенок. Поэтому наш глаз воспринимает радугу именно такой разноцветной. Заметим интересный факт, что это явление может лицезреть исключительно только человек. Потому что это всего лишь иллюзия.

Виды радуги

  1. Радуга, образовавшаяся от солнца, встречается наиболее часто. Она является самой яркой из всех разновидностей. Состоит из семи основных цветов: красного оранжевого, жёлтого, зелёного, голубого, синего, фиолетового. Но если разобрать в подробностях, оттенков намного больше, чем наш глаз может увидеть.
  2. Радуга, созданная луной, встречается в тёмное время суток. Считается, что её можно лицезреть всегда. Но, как показывает практика, в основном такое явление наблюдается только в дождливых местностях или около больших водопадов. Цвета лунной радуги очень тусклые. Их суждено рассмотреть лишь с помощью специальной техники. Но даже с ней наш глаз способен разобрать только полоску белого цвета.
  3. Радуга, появившаяся вследствие тумана, подобна широкой сияющей светлой арке. Иногда этот вид путают с предыдущим. Сверху цвет может быть оранжевым, снизу — иметь оттенок фиолетового. Солнечные лучи, проходя сквозь туман, образуют прекрасное явление природы. в небе возникает крайне редко. Она не схожа с предыдущими видами своей горизонтальной формой. Лицезреть это явление можно только над перистыми облаками. Они, как правило, простираются на высоте 8-10 километров. Угол, под которым радуга покажет себя во всей красе, должен быть более 58 градусов. Цвета обычно остаются такими же, как в солнечной радуге.

Золотая пропорция (1,618)

Идеальную соразмерность чаще всего можно встретить в мире животных. Они награждены такой пропорцией, которая равна корню от соответствия числа PHI к единице. Это соотношение является связующим фактом всех животных на планете. Великие умы древности называли это число божественной пропорцией. Её ещё можно назвать золотым сечением.

законы математики

Этому правилу полностью соответствует гармоничность строения человека. Например, если определить расстояние между глазами и бровями, то оно будет равно божественной постоянной.

Золотое сечение — это пример того, сколь важна математика в природе, закону которой начали следовать дизайнеры, художники, архитекторы, создатели красивых и совершенных вещей. Они создают с помощью божественной постоянной свои творения, которые имеют сбалансированность, гармонию и на них приятно смотреть. Наш ум способен считать красивым те вещи, предметы, явления, где есть неравное соотношение частей. Пропорциональностью наш мозг называет именно золотое сечение.

Спираль ДНК

Как справедливо отметил немецкий учёный Гуго Вейль, корни симметрии пришли через математику. Многие отмечали совершенность геометрических фигур и обращали на них внимание. Например, пчелиные соты — это не что иное, как шестиугольник, сотворённый самой природой. Ещё можно обратить внимание на шишки ели, которые имеют цилиндрическую форму. Также в окружающем мире часто встречается спираль: рога крупного и мелкого скота, раковины моллюсков, молекулы ДНК.

геометрия прогрессия

Спираль ДНК сотворена по принципу золотого сечения. Она является связующим звеном между схемой материального тела и её реальным образом. А если рассмотреть мозг, то он представляет собой не что иное, как проводник между телом и разумом. Интеллект связывает жизнь и форму её проявления и позволяет жизни, заключённой в форме, познавать саму себя. С помощью этого человечеству достижимо понять окружающую планету, искать в ней закономерности, которые затем применять к изучению внутреннего мира.

Читайте:  Добро со злом природой смешаны Как тьма ночей со светом дней Чем больше ангельского в женщине Тем гуще дьявольское в ней

Деление в природе

Митоз клетки состоит из четырёх фаз:

  • Профаза. В ней увеличивается ядро. Проявляются хромосомы, которые начинают закручиваться в спираль и превращаться в свой обыкновенный вид. Формируется место для деления клетки. В конце фазы растворяется ядро и его оболочка, и хромосомы вытекают в цитоплазму. Это самый продолжительный этап деления.
  • Метафаза. Здесь заканчивается закручивание в спираль хромосом, они образуют метафазную пластинку. Хроматиды располагаются противоположно друг другу, готовясь к делению. Между ними появляется место для рассоединения — веретено. На этом второй этап заканчивается.

митоз клетки

  • Анафаза. Хроматиды расходятся в противоположные стороны. Теперь в клетке имеется два набора хромосом за счёт их деления. Этот этап очень короткий.
  • Телофаза. В каждой половинке клетки образуется ядро, внутри которого формируется ядрышко. Активно рассоединяется цитоплазма. Веретено постепенно исчезает.

Значение митоза

За счёт уникального способа деления, каждая последующая после размножения клетка имеет такой же состав генов, как её материнская. Состав хромосом обе клетки получают одинаковый. Здесь не обошлось без такой науки, как геометрия. Прогрессия в митозе имеет важное значение, так как по этому принципу размножаются все клетки.

Откуда берутся мутации

Этот процесс служит гарантией постоянного набора хромосом и генетических материалов в каждой клетке. За счёт митоза происходит развитие организма, размножение, регенерация. В случае нарушения деления клетки из-за действия каких-то ядов хромосомы могут не разойтись по своим половинкам, или в них, возможно, будут наблюдаться нарушения в строении. Это станет явным показателем начинающихся мутаций.

Подводя итоги

Что общего в математике и природе? На этот вопрос вы найдёте ответ в нашей статье. А если копнуть глубже, то нужно сказать, что с помощью изучения окружающего мира человек познаёт самого себя. Без Высшего разума, породившего все живое, не могло бы ничего быть. Природа находится исключительно в гармонии, в строгой последовательности своих законов. А возможно ли все это без разума?

Приведём высказывание учёного, философа, математика и физика Анри Пуанкаре, который, как никто другой, сможет дать ответ на вопрос о том, действительно ли математика в природе является основополагающей. Некоторым материалистам могут не понравиться такие рассуждения, но навряд ли они смогли бы их опровергнуть. Пуанкаре говорит, что гармония, которую человеческий разум хочет открыть в природе, не может существовать вне его. Объективная реальность, которая присутствует в умах хотя бы нескольких индивидов, может быть доступна всему человечеству. Связь, которая собирает воедино мыслительную деятельность, и называется гармонией мира. В последнее время на пути к такому процессу есть колоссальные продвижения, но они очень малы. Эти звенья, связывающие Вселенную и индивида, должны быть ценны любым человеческим умом, который чувствителен к этим процессам.

Источник

Математическая пропорция в природе

Пропорция обретается не только в числах и мерах,

но также в звуках, тяжестях, временах и положениях

и в любой силе, какая бы она ни была»

Леонардо да Винчи

В древности люди осознавали, что окружающий их мир пребывает в гармонии и равновесии. Они прибегали к помощи мифов и религии, чтобы больше узнать о порядке, которому подчинена природа. Сегодня мы обращаемся главным образом к ученым и математикам, чтобы они помогли нам объяснить то, что происходит в окружающем нас мире.

Актуальность проекта:

В наше время трудно найти человека, который не имел бы какого-либо представления о пропорции. Понятие «Пропорция» занимает важное место в курсе всей математики вообще. Эта тема является одной из основных, базовых тем курса.

Практическая значимость:

Заключается в том, что данный материал можно использовать на уроках математики, на внеурочных занятиях. Он развивает воображение, мышление, смекалку.

Цель исследования:

Сформировать представление о пропорции через анализ имеющихся уже знаний, а также анализ деятельности человека и явлений живой природы.

анализ научно-литературных источников по теме: «Пропорция» ;

изучение свойства пропорции в окружающем нас мире ;

применение свойства «золотого сечения» для деления целого на две неравные части, с точки зрения прекрасной формы ;

выяснить, в каких науках, кроме геометрии, мы можем встретиться с пропорцией.

Объект исследования: пропорция

Предмет изучения: применение пропорции в жизни человека.

Гипотеза: Золотая пропорция знаменует собой вершины эстетических изысканий, предел гармонии Космоса. Свойство «ЗОЛОТОЙ ПРОПОРЦИИ» убеждает нас в неразрывном единстве «математики и гармонии».

Методология исследования:

Изучение определения пропорции;

Знакомство с историей возникновения пропорции;

Исследование роли пропорции в нашей жизни;

Применение свойства «золотого сечения» для деления целого на две неравные части, с точки зрения прекрасной формы .

Моя исследовательская работа посвящена изучению практического применения пропорциональности в науке и жизни человека. В этой работе, я попыталась найти тесную связь существования пропорций в разных областях науки, а так же в реальной жизни человека. Оказывается, что в повседневной жизни нередко возникают ситуации, когда пропорции помогают решать различные задачи.

Для начала я изучила различные источники информации, проанализировала и систематизировала материал, интернет-ресурсы, изучила уровень математической культуры одноклассников методом опроса (анкетирование) и анализа (статистической обработки данных).

ОСНОВНАЯ ЧАСТЬ

Теоретическая часть

История возникновения пропорции

Слово «пропорция» ввел в употребление Цицерон в 1 веке до н. э., переводя на латынь платоновский термин «аналогия», который буквально означал «вновь-отношение», или, как мы говорим, «соотношение». С тех пор вот уже 2000 лет пропорцией в математике называют равенство между отношениями четырёх величин a, b , c, d:

Пропорции начали изучать еще в древности. В IV в. до н. э. древнегреческий математик Евдокс дал определение пропорции, составленной из величин любой природы.

Пифагор – выдающийся древнегреческий философ и математик был убежден в том, что в природе существует органическая гармония, которая может быть выражена посредством чисел и пропорции, а также в то, что эти пропорции можно применять для строительства домов или других зданий.

Пифагор провозглашал совершенно определенные пропорциональные соотношения, которые он считал идеальными для благополучного существования людей. Он назвал это «Золотой серединой» (имея в виду то, что такие пропорции представляют собой нечто среднее), «Золотым сечением». Эта пропорция иногда называется «Священной пропорцией». Пифагор был тем человеком, который довел соотношение разных частей одного целого до трансцендентного стандарта. Такие пропорции, воплощенные в чем-либо, обычно радуют глаз, и они встречаются повсюду в естественной природе.

Большой научный интерес вызывает деление отрезка в отношении «золотого» сечения.

Что такое пропорция?

«Пропорция» — происходит от латинского слова proportio, означающего соразмерность, определенное соотношение частей между собой. В математике: равенство двух отношений. Пропорции используют с древности при решении разных задач в математике. Ещё в древней Греции математики использовали такой аппарат, как ПРОПОРЦИЯ.

Практическая часть

Пропорция в биологии, медицине

В медицинской практике врачи следят за тем, сколько и когда надо давать лекарства больному. В правильных дозах лекарство даёт лечебный эффект, в меньших – оно бесполезно, в больших – приносит вред. При изготовлении лекарств тоже соблюдаются пропорции. Здесь необходима точность, так как при нарушении пропорций, составляющих лекарство ингредиентов, может получиться не лекарство, а яд. Отношения и пропорции используются также в аптеках при изготовлении лекарств и лечебных напитков. Чтобы изготовить лекарственный препарат надо точно знать, сколько частей приходится на какую-либо часть.

Биологи на своих уроках, когда рассматривают, допустим, клетки кожицы луковицы, увеличивают с помощью микроскопа её размеры. Микроскопом также пользуются лаборанты, определяющие состав крови, мочи и т.д.

Пропорция в географии

В географии также применяют пропорцию – масштаб. Масштабом называют отношение длины отрезка на карте или плане к длине соответствующего отрезка на местности. Масштаб показывает во сколько раз расстояние на плане меньше, чем указанное расстояние на самом деле.

Благодаря знаниям по теме «Пропорция» удалось смастерить подобие Земного шара – глобус.

Пропорции в искусстве, живописи

Переходя к примерам «золотого сечения» в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Его личность – одна из загадок истории. Сам Леонардо да Винчи говорил: «Пусть никто, не будучи математиком, не дерзнет читать мои труды». Он снискал славу непревзойденного художника, великого ученого, гения, превосходившего многие изобретения, которые не были осуществлены вплоть до XX в.

Портрет Монны Лизы (Джоконды) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника. Все говорили о том глубоком знании Леонардо да Винчи о строении человеческого тела, благодаря которому ему удалось уловить эту загадочную улыбку. Говорили о выразительности отдельных частей картины и о пейзаже, небывалом спутнике портрета. Толковали о естественности выражения, о простоте позы, о красоте рук. Художник сделал еще небывалое: на картине изображен воздух, он окутывает фигуру прозрачной дымкой.

Пропорции в геометрии

Отрезок прямой AB можно разделить на две части следующими способами:

1. На две равные части – AB: AC = AB: BC;

2. На две неравные части в любом отношении (такие части пропорции не образуют);

3. На две части, когда AB: AC = AC: BC

Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении.

Золотое сечение –это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как большая часть относится к меньшей.

a: b=b: c или c: b=b: a

Рис. 1. Геометрическое изображение золотой пропорции

Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки.

Читайте:  Предложения со словосочетанием laquo стремиться к добру raquo

Многие предметы прямоугольной формы выполнены на основе «золотого сечения», так как это приятная для человеческого глаза форма. Окружающие предметы также часто дают примеры золотого сечения. Например, переплеты многих книг имеют отношение ширины и длины, близкое к 0,618.

Пропорции в черчении

На уроках черчения при выполнении чертежей тоже нужно соблюдать масштаб, значит, и здесь присутствует пропорция.

Пропорции в химии

Больше всего сталкиваются на уроках химии с пропорциями при решении задач на концентрации растворов (процентное содержание вещества в растворе). Точные весовые пропорции различных веществ при соединении дают возможность получения нового вещества.

Пропорции в физике

С глубокой древности люди пользовались различными рычагами. Весло, лом, весы, ножницы, качели, тачка и т.д. – примеры рычагов. Выигрыш, который дает рычаг в прилагаемом усилии, определяется пропорцией, где M и m – массы грузов, а L и l – «плечи» рычага. M : m = L : l

Пропорции в математике

Отношения 3:2 и 12:8 равны, т. к. 3:2=1,5 и 12:8=1,5.

Получаем равенство 3:2=12:8, или 3/2=12/8.

Читают: «Отношение 3 к 2 равно отношению 12 к 8», или «3 так относится к 2, как 12 относится к 8».

Равенство двух отношений называют пропорцией:

m/k = n/t, или m:k = n:t .

Все члены пропорции отличны от нуля: m≠0, k≠0, n≠0, t≠0.

Обрати внимание!

Числа m и t называют крайними членами пропорции, а числа k и n — средними.

Основное свойство пропорции:

произведение крайних членов пропорции равно произведению её средних членов.

Если m/k = n/t, или m:k = n:t , то m⋅t = k⋅n.

Действительно, в пропорции 3/2=12/8 произведение крайних членов 3⋅8=24 и произведение средних членов2⋅12=24 равны.

Верно и обратное утверждение. Если m, k, n и t — не равные нулю числа, и m⋅t=k⋅n, то m/k=n/t

В пропорции 3/2=12/8 поменяем местами средние члены или крайние члены, тогда получим снова верные равенства:

Пропорции в архитектуре

Пропорция в архитектуре – отношение подобных отрезков или фигур, составляющих архитектурное сооружение и придающих ему целостность и гармоничность. Архитектурные пропорции определяются как художественным замыслом, так и конструктивно-техническими требованиями.

Существует несколько теорий архитектурных пропорций, относящихся к различным историческим периодам. В своей основе они имеют понятие симметрии.

При постройке храма в честь богини Дианы римляне взяли такую пропорцию, которой отличаются стройные женщины: толщина колоны составила лишь 1/8 ее высоты. Благодаря этому колонны казалась выше, чем она была на самом деле, как раз за счет уменьшения толщины. В архитектуру вошли оба вида колонн, сохраняющие одна мужскую, другая женскую пропорции в отношениях между основанием и высотой.

Храм богини Дианы Храм Василия Блаженного в Москве

Пропорции в быту

А летом, в период заготовки продуктов впрок, ваши мамы тоже пользуются пропорциональными соотношениями. Например, в магазине часто продается 80% уксусная эссенция, а в рецептах заготовки продуктов используется столовый 9% столовый уксус. Как решить эту проблему?

Решим задачу «старинным арифметическим способом»:

Имеется 90 г 80% уксусной эссенции. Какое наибольшее количество 9% столового уксуса из нее можно получить? Столовый уксус из эссенции можно получить, разбавив ее водой, т. е. 0% «уксусом». Применяя старинный способ, имеем схему: из которой получаем, что 9 частей эссенции нужно разбавить 71 частью воды, т. е. к 90 г эссенции следует добавить 710 г воды.

В результате получится 90 + 710 = 800 г столового уксуса

• без пропорций не удастся приготовить суп или компот,

• нельзя по своему размеру связать свитер

• невозможно точно рассчитать количество корма

• или лекарства для своего питомца.

Практическая область страны «Пропорция»

Из 1 кг крупы получается 2,1 кг гречневой каши. Сколько нужно взять крупы, чтобы получить 1600 г каши?

Мы имеем отношение

1 кг крупы = 2, 1 кг каши

х кг крупы = 1,6 кг каши
x * 2,1 = 1,6 * 1
х = 16 : 21

х = 0,762 кг.

В школе две уборщицы могут сделать уборку за 3 ч. Сколько нужно времени, чтобы три уборщицы выполнили ту же работу?

Мы имеем отношение

2 уборщицы — 3 часа

3 уборщицы — х часов

обратно пропорциональная зависимость
2 : 3 = х : 3
х = 6 : 3

х = 2 часа

Определите процент всхожести семян гороха, если из 200 горошин взошло 170 штук?

Мы имеем отношение

200 горошин = 100 %

170 горошин = х %
200 * x = 170 * 100
х = 17000 : 200

х = 85 %

Заведующая пришкольным участком сообщила, что на 3 сотки у нее ушло 9 ведер картофеля. А огород у нее 15 соток. Сколько ведер картофеля нужно, чтобы засадить весь огород?

Мы имеем отношение

3 сотки = 9 ведер

15 соток = х ведер
3 * x = 15 * 9
х = 135 : 3

х = 45 ведер

В школьном коридоре длиной 33 м нужно покрасить пол. Покрасив 11 м, израсходовали 4,125 кг краски. Сколько нужно краски, чтобы выкрасить остальной пол?

Мы имеем отношение

11 м = 4,125 кг краски

22 м = х кг краски
11 * x = 22 * 4,125
х = 90,75 : 11

х = 8,25 кг краски

Повар школы решил сварить варенье из смородины. По рецепту на 2 кг ягод расходуют 3 кг сахара. Сколько нужно сахара, чтобы сварить варенье из 2,5 кг смородины?

Мы имеем отношение

2 кг ягод = 3 кг сахара

2,5 кг ягод = х кг сахара
2 * x = 2,5 * 3
х = 7,5 : 2

х = 3,75 кг сахара

Решите задачи:

Для лекарственного отвара ромашки на 100г кипятка необходимо 20 г сухой ромашки. Сколько г ромашки необходимо для 500г отвара.

Больному прописан курс лекарства, которое нужно принимать по 250 мг два раза в день в течение 7 дней. В одной упаковке лекарства содержится 10 таблеток по 125 мг. Какое наименьшее количество упаковок понадобится на весь курс лечения.

Найдите расстояние от Москвы до Северного полюса, если на карте это расстояние – 3,5 см, а М 1:100000000.

На строительство дома идет 4 тыс. штук кирпича. Сколько тысяч штук кирпича необходимо для строительства 15 таких же домов.

Для перевозки песка при строительстве потребовалось 14 автомашин грузоподъемностью 4,5 т. Сколько потребуется автомашин грузоподъемностью 7 т для перевозки этого же песка?

— Исследования показали, что в окружающем мире есть величины, которые связаны между собой пропорциональными зависимостями и эти зависимости люди используют в повседневной жизни.

— Пропорция играет огромную роль в биологии и медицине, географии, живописи, геометрии, черчении, химии, физике, математике и в быту.

— Пропорция широко используется в архитектуре. Симметрия форм зданий, отдельных их элементов придает им красоту. Использование симметрии в конструкции зданий, симметричных элементов в отделке, а также симметрично расположенные строения создают красоту и гармонию.

— При изучении золотой пропорции в частности, в архитектуре, я пришла к выводу, что математика помогает создавать целостное представление о произведениях и убеждает нас в неразрывном единстве «математики и гармонии». Таким образом, моя гипотеза полностью подтвердилась.

В своем проекте по математике "Удивительный мир пропорций" мною была изучена теория пропорции. Пропорции сопровождают нас повсюду и являются неотъемлемой частью нашей жизни.

Совершенные конструкции в космическом пространстве, завитки самого древнего существа на Земле – улитки Наутилус и расположение визуальных элементов на полотнах великих мастеров живописи находятся в соотношении 0,618 или 1,618. Сплавы металлов обладают лучшими свойствами, если атомарные веса составляющих их элементов находятся в данной пропорции. Совсем недавно было обнаружено, что существует наномир, подчиняющийся золотой пропорции. Окислы урана и других металлов образуются в соответствии с числами Фибоначчи. Можно предполагать, что золотая пропорция является основополагающим принципом образования химических соединений.

Золотая пропорция – понятие математическое, ее изучение – это, прежде всего, задача науки. Но она уже является критерием гармонии и красоты, а это уже категории искусства. В своей работе я рассмотрела лишь некоторые области, в которых сознательно или интуитивно применялась «золотая пропорция»: скульптуру, архитектуру, поэзию, живопись, музыку. Но золотая пропорция определяет и закономерности развития многих организмов, ее присутствие отмечают почвоведы, химики, геологи, астрономы и др. ученые.

С глубокой древности люди используют математический аппарат в повседневной жизни. Одним из них является пропорция. Она используется, начиная с приготовления пищи и заканчивая произведениями искусства, такими как скульптура, живопись, архитектура, а также в живой природе.

В результате исследования я установила: в мире существует уникальная пропорция, которую называют «формулой красоты», что человек применяет пропорцию в своей деятельности и сам является продуктом природы, отвечающим закону пропорции.

Исследовательская работа по математике на тему "Удивительный мир пропорций" будет интересна учащимся всех классов.

В процессе своей работы я расширила знания о пропорциях, убедилась, что они присутствуют во многих областях жизни, с пропорцией мы сталкиваемся в живой и не живой природе, при изучении различных предметов. Пропорция действительно создаёт порядок, красоту и совершенство в окружающем нас мире.

Над темой я работала с ноября месяца. В дальнейшем я планирую расширять свой кругозор, пополнять знания по этой теме.

Я выбрала эту тему потому, что люблю математику.

Надеюсь на то, что моя исследовательская и практическая работа вам была понятна, интересна и познавательна.

Спасибо за внимание!

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

И.Агеева “Занимательные материалы по информатике и математике” –М.: Творческий центр, 2005.

CD-ROM “От плуга до лазера 2.0”, Новый диск, 1998 г.

Математика: наглядная геометрия: учеб. Для учащихся 6 кл. общеобразоват. учреждений/ Т.Г. Ходот, А.Ю. Ходот. – М.: Просвещение, 2007. – 143с.

Математика 5 класс Г.В. Дорофеев, И.Ф. Шарыгин, Учебник для образовательных учреждений. – М.: Просвещение, 2013 г.

Геометрия: красота и гармония. Простейшие задачи аналитической геометрии на плоскости. Золотая пропорция. Симметрия вокруг нас. 8-9 классы: элективные курсы/авт.-сост. Л.С. Сагателова, В.Н. Студенецкая. – Волгоград: Учитель, 2007. – 158с.

Математика. Школьная энциклопедия. С.М. Никольский.- М: Большая Российская энциклопедия: Дрофа 1997-527с.

Источник