Круговорот биогенных элементов в биосфере Биомасса и продуктивность вида
Что такое круговорот веществ? Круговорот веществ в экосистеме. Схема круговорота веществ в природе
С самого начала существования нашей планеты постоянно происходят различные процессы передачи энергии между живыми организмами и окружающей средой. Она преобразуется, переходит в иные формы, связывается и снова рассеивается. То же самое можно сказать и о любом веществе, составляющем основу жизни. Каждое из них проходит множество инстанций, претерпевает многократные изменения и в итоге возвращается.
Эти процессы дают представление о том, что такое круговорот веществ в природе. Они позволяют проследить движение не только соединений, но и отдельных элементов. Постараемся подробнее разобраться в данном вопросе.
Общее понятие о круговороте веществ
Что такое круговорот веществ? Это циклические переходы из одной формы в другую, сопровождающиеся частичной потерей или рассеиванием, но имеющие постоянный, устойчивый характер. То есть любое вещество или элемент совершает ряд переходов по ступеням, при этом преобразуясь и изменяясь, но в итоге все равно возвращается в начальную форму.
Естественно, что с течением времени могут быть частичные потери в количестве рассматриваемого соединения или элемента. Однако общая схема постоянна и сохраняется уже многие тысячелетия.
Что такое круговорот веществ, можно рассмотреть на примере. Самый простой из них — это преобразования органических веществ. Изначально из них состоят все многоклеточные живые существа. После завершения их жизненного цикла тела их разлагаются специальными организмами, и органические соединения преобразуются в неорганические. После эти соединения поглощаются другими существами и внутри их тела снова восстанавливаются до органической формы. Далее процесс повторяется и циклически продолжается все время.
Схема круговорота веществ в природе дает понять, что ничто не возникает ниоткуда и не исчезает в никуда. У всего есть свое начало, конец и переходные формы. Это основные правила жизни. Им же подчиняется энергия. Рассмотрим примеры преобразования, которые происходят в экосистемах, живых существах. А также разберемся, что такое круговорот веществ, основанный на одном определенном элементе.
Живое вещество в природе
Самое главное вещество биосферы — живое. Что это такое? Это каждый представитель живой природы. Все вместе они формируют биомассу. Она, естественно, претерпевает изменения, является участником всех процессов, происходящих в окружающей среде.
Круговорот живого вещества можно проиллюстрировать примером следующего рода.
- Первые создания, которые непосредственно улавливают энергию солнечного света и преобразуют ее в энергию химических связей — это растения, сине-зеленые бактерии. Происходит это за счет пигмента хлорофилла в процессе фотосинтеза. Результат — синтез органического вещества из неорганических компонентов. Так сформировалось первое звено среди живого вещества биосферы.
- Далее идут животные, которые способны непосредственно питаться растениями. А также всеядные существа, к которым относится и человек в том числе. Они потребляют первое звено и преобразуют органическое вещество внутри себя в другую форму — неорганику.
- Растительноядные существа подвергаются поеданию со стороны плотоядных животных. Так вещества переходят уже в иные организмы.
- Далее идут те организмы, которые способны питаться плотоядными формами. Высшие хищники. Они — заключительное звено циркуляции органики. После их отмирания в ход вступают следующие организмы.
- Детритофаги — микроорганизмы, грибки, простейшие, которые разлагают мертвые останки живых существ и переводят все вещества в неорганическую форму.
- Эти соединения (углекислый газ, вода, минеральные соли) используются снова растениями в процессе создания органических соединений.
Таким образом, приведенная схема круговорота веществ в природе отражает преобразования живой составляющей биосферы. Все начинается с растений и заканчивается ими же. Полный циклический процесс, который имеет массу ответвлений и сложных завитков.
Круговорот веществ в экосистеме
Любая экосистема — это целое сообщество различных организмов, объединенных между собой сложными взаимоотношениями в пищевом плане, а также находящихся под влиянием сходных условий окружающей среды.
Круговорот веществ в экосистеме подчиняется определенным экологическим законам. Так, обязательно строгое соподчинение по цепям питания. Обмен энергией, веществами, циркуляция многих элементов — все это происходит между особями внутри данной экологической группы.
При этом все они делятся на несколько групп:
- продуценты;
- консументы первого порядка;
- консументы второго порядка;
- консументы третьего порядка;
- всеядные организмы;
- редуценты или детритофаги.
Схема круговорота веществ может выглядеть примерно так:
- растение (продуцент) дает органическое вещество; (консумент первого порядка) преобразует его в неорганическое и другую органику;
- плотоядное животное (консумент второго порядка) преобразует в другую органику;
- высший хищник (консумент третьего порядка) опять частично рассеивает ее в виде тепла, а частично концентрирует в форме внутренних органических веществ;
- микроорганизмы, например бактерии, грибки и прочие (редуценты или детритофаги), разлагают мертвые останки животных и формируют массу неорганических соединений;
- растения поглощают неорганику и снова создают в процессе фотосинтеза ряд важных органических соединений, то есть продуцируют.
Вещества экосистемы
Очевидно, что в одной экосистеме в тесном взаимодействии находится два основных типа вещества: органические и неорганические. Из органики это:
- белки;
- жиры;
- углеводы.
Неорганические соединения следующие:
- вода;
- углекислый газ;
- минеральные соли;
- ряд важных макроэлементов.
Очень важным условием для нормального функционирования любой экосистемы является постоянный приток солнечной энергии. Ведь растения могут осуществлять фотосинтез только при этом условии. Кроме того, энергия, которая заключается в химических связях соединений, рассеивается в виде тепла в достаточно больших количествах. Поэтому вещества не могут циркулировать в неизменном состоянии без потерь.
Схема круговорота веществ на лугу
Луг — это особенное природное сообщество. Ведь он имеет некоторые отличия от всех других, например от лесного. В чем заключаются эти отличия?
- На лугу преобладает только травяная растительность, состоящая из многолетних и однолетних невысоких трав. При этом они между собой отличаются. Более светолюбивые обладают высоким ростом, а те, что могут жить в тени, низким.
- В пределах данного сообщества нет крупных представителей животного мира. Это связано с тем, что им просто негде будет прятаться, ведь деревьев нет.
- Периодически во время сильных дождей все пространство луга заливается водой. Отсюда и другое их название — заливные или наливные. В таких условиях могут существовать далеко не все живые существа.
Если же говорить о сходствах лугового и лесного, к примеру, сообщества, то следует выделить главную черту: на обеих территориях обитают представители растений, насекомых, грызунов, птиц, пресмыкающихся, земноводных и млекопитающих.
Схема круговорота веществ на лугу может иметь следующий вид:
- минеральные вещества и вода, которые потребляет непосредственно из земли растение;
- насекомые, которые опыляют цветки и позволяют им размножаться, при этом питаясь нектаром, то есть производимым растением органическим веществом;
- птицы и млекопитающие, поедающие насекомых и растения, то есть употребляющие органическое вещество;
- микроорганизмы, которые разлагают мертвые остатки растений и животных и высвобождают неорганические вещества (минеральные соли, воду, углекислый газ).
Пример лугового круговорота
Важное значение имеют все звенья, обозначенные в примере. Круговорот веществ на лугу — необходимое условие для существования данного сообщества. Почва способна обогащаться полезными веществами и элементами только благодаря деятельности ее обитателей — микроорганизмов-детритофагов, червей, мокриц и прочих существ. Без этого условия растениям будет недоставать неорганики для фотосинтеза и роста, а значит, будет в дефиците и органическое вещество, которое они производят. Такое, как крахмал, целлюлоза, белок и прочие. Это приведет к сокращению численности животных и птиц, а значит, и органического вещества в целом. Пострадают в итоге и детритофаги, так цикл нарушится.
Круговорот веществ на лугу можно проиллюстрировать и более конкретным примером. Попробуем составить такую схему.
- Минеральные соли, вода, углекислый газ, кислород потребляет ромашка аптечная.
- Пчела медоносная опыляет обозначенное растение и поедает его пыльцу, то есть углеводы и белки.
- Пчелоед и осоед склевывают пчелу медоносную и потребляют органическое вещество ее тела (хитин, белок, углеводы).
- Луговая полевка и другие мелкие грызуны и более крупные виды поедают органическую составляющую растений и насекомых.
- Пустельга (птица) поедает грызунов и потребляет питательные вещества.
- После смерти все животные и насекомые попадают на землю, где их тело подвергается разложению на составляющие соединения деятельностью микроорганизмов, червей, мокриц и других детритофагов.
- В результате почва снова насыщается неорганическими солями, водой и прочими соединениями, которые поглощают корни растений.
Цепи и сети питания
Круговорот веществ и энергии, как уже стало понятно, тесно связан с таким экологическим понятием, как цепь или сеть питания. Ведь любое вещество — это материал, продукт, который служит строительным материалом для формирования структурных частей клеток, тканей и органов.
Каждая цепь питания неотвратимо влечет за собой и циклические преобразования веществ. А любые процессы синтеза и распада требуют затраты или высвобождения энергии. Следовательно, она также вовлекается в единый круговорот в природе.
Почему существуют понятия «цепь» и «сеть питания»? Все дело в том, что взаимоотношения между организмами в пределах одной экологической группы часто намного сложнее, чем просто обычная рядовая цепь. Ведь один и тот же представитель животного мира может быть и травоядным, и хищником. Существуют всеядные организмы. Кроме того, для многих создается конкурентная среда за добычу и пропитание, что также накладывает свой отпечаток на общий план взаимоотношений внутри биогеоценоза.
Вот в этих случаях цепи тесно переплетаются между собой и формируются так называемые сети питания. Особенно хорошо это заметно в многонаселенных обитателями местах: лесных, озерных сообществах, тропических лесах и прочих.
Все цепи питания можно условно разделить на два вида:
- выедания, или пастбищные;
- разложения, или детритные.
Основное различие между ними в том, что в первом случае все начинается с живого организма — растения. Во втором же — с мертвых остатков, экскрементов и прочих отложений, которые перерабатываются микроорганизмами, червями и так далее.
Изменения энергии
Энергия, как и вещества, претерпевает ряд изменений в ходе процессов в экосистемах. Вся она делится на два основных вида:
- солнечного света;
- химических связей.
В ходе построения цепей питания энергия как раз и переходит из одной формы в другую. При этом происходят частичные ее потери. Ведь она расходуется на жизненные процессы каждого существа, рассеивается в виде тепла. Именно поэтому важно, чтобы солнечная энергия как первоисточник постоянно пополняла запасы любого сообщества.
Непосредственно в форме света от Солнца ее могут потреблять только такие организмы, как:
- растения;
- бактерии;
- фотосинтезирующие одноклеточные.
После них вся энергия переходит в следующую форму — химические связи соединений. В данной форме ее потребляют гетеротрофные представители биосферы.
Круговорот воды
Мы уже обозначили, что самый важный и исторически сложившийся жизненный процесс — это круговорот веществ в природе. Вода является тем неорганическим соединением, значение которого особенно важно и масштабно. Поэтому то, как происходит ее циркуляция, рассмотрим в общих чертах.
- Огромное количество воды сосредоточено на поверхности нашей планеты в водоемах разного рода. Это моря и океаны, болота, реки, озера, ручьи, искусственные сооружения. С их поверхности происходит постоянное испарение влаги, то есть вода в виде пара переходит в слои атмосферы.
- Почва, как ее наружная, так и внутренняя часть, также содержит много влаги. Это подземные или грунтовые воды. С поверхности пар поступает в атмосферу, с внутренних слоев стекает в водоемы, а оттуда испаряется.
- Конденсируясь в атмосфере, вода постепенно достигает максимума и начинает возвращаться на землю в виде осадков. Зимой это снег, летом — дождь.
- Растения принимают активное участие в поглощении и транспирации воды, так как проносят через себя огромное ее количество.
Таким образом, круговорот воды и круговорот веществ в природе обеспечивают нормальное состояние любой экосистемы, а значит, и организмов.
Изучение круговорота веществ в начальной школе
Чтобы дети имели представление о том, какие циклические изменения происходят в природе, рассказывать им об этом следует еще с начальных ступеней обучения. Ребята должны иметь знания о том, что такое круговорот веществ. 3 класс — вполне подходящее для этого время. В этот период дети достаточно взрослые, чтобы полностью осознать и усвоить информацию подобного рода.
Во многих образовательных программах по окружающему миру представлена хорошая схема «Круговорот веществ. 3 класс». Она отражает основные типы преобразований воды, вещества, пищевые цепи, которые характерны для каждой экосистемы.
Примерная схема круговорота веществ для младших школьников может иметь вид: вода и минеральные вещества в растениях — органическое вещество в животных — вода и минеральные соли после отмирания растений и животных.
Каждый этап следует пояснить примерами и подробным описанием для формирования четкого представления о происходящих природных процессах.
Источник
Значение круговоротов в природе
Природа
Какое значение в природе имеет круговорот веществ, Вы узнаете из этой статьи.
Каково значение круговорота в природе?
Рассказ о круговороте веществ в природе начнем с описания их видов. Различают 2 круговорота веществ в природе:
- большой (геологический), который происходит в результате воздействия абиотических факторов,
- малый (биотический), который происходит благодаря участию живых организмов.
Геологический большой круговорот обусловлен взаимным действием глубинной энергии Земли и солнечной энергии. Он отвечает за перераспределение веществ между глубокими горизонтами Земли и биосферой. Этот круговорот происходит на протяжении миллионов лет. В ходе его горные породы разрушаются, выветриваются и, в конце концов, потоки воды Мирового океана их смывают. В океане породы оседают на дно и образовывают осадочные породы. Только маленькая их частичка возвращается на сушу с живыми организмами, которые извлекает человек или другие животные. Происходящие процессы поднятия морского дна и опускания материков приводят к возвращению морских отложений на сушу, и большой круговорот начинается снова.
Малый круговорот является частью большого круговорота. Он осуществляется только в пределах биосферы. Скорость протекаемых процессов происходит значительно выше. Его суть состоит в следующем – живое вещество образуется из неорганических соединений в ходе фотосинтеза и превращения органического вещества в процессе разложения вновь в неорганические соединения.
В малом круговороте некоторая часть вещества исключается из него и закрепляется в осадочных отложениях с помощью геохимических процессов или переносится в океан.
Какое значение круговорота веществ в природе?
Круговороты происходят в течение всей истории планеты и являют собой циклический процесс, который все время повторяется. Благодаря им происходит превращение и перемещение химических элементов, их соединений. Круговороты обеспечивают развитие жизни на Земле. Они формируют природные условия на планете. Ученые выделяют несколько функций круговорота:
- обеспечивают функционирование основных газов атмосферы – кислорода, азота и подземных газов
- отвечают за окислительно-восстановительные процессы на планете
- способствуют размножению, росту и перемещению в пространстве живых веществ
- влияют на биогеохимическую деятельность человека
Надеемся, что из этой статьи Вы узнали, какова роль круговорота веществ в природе.
Источник
Круговорот веществ в биосфере, геологический и биохимический виды, значение живых организмов
Длительное существование жизни на Земле возможно благодаря постоянному круговороту веществ в биосфере. Все элементы, которые есть на планете, находятся в ограниченном количестве. Использование всех запасов привело бы к исчезновению всего живого. Поэтому в природе существуют механизмы, обеспечивающие перемещение химических соединений из живого к неживой природе и обратно.
Виды круговоротов веществ
Неоднократное использование существующих элементов способствует постоянству жизненных процессов при достаточном количестве энергетических ресурсов. Главный источник энергии, обеспечивающий круговорот веществ в биосфере — Солнце.
Выделяют три круговорота: геологический, биогеохимический и антропогенный (появился после возникновения человечества).
Геологический
Геологический или большой круговорот веществ функционирует благодаря внешним и внутренним геологическим процессам.
Эндогенные (глубинные) процессы происходят под воздействием внутренней энергии планеты. Ее источником служит радиоактивность, а также ряд биохимических реакций при формировании минералов и др. К глубинным процессам относят: перемещение земной коры, землетрясения, возникновение магматических расплавов, преобразования твердых пород.
Экзогенные процессы вызваны влиянием солнечной энергии. Основные из них: разрушение и изменение минеральных и органических пород, перенос этих остатков на другие участки земли, формирование осадочных пород. Экзогенные процессы также включают деятельность живой природы и человека.
Континенты, впадины океанического дна — результат влияния эндогенных факторов, а незначительные изменения существующего рельефа сформировались под действием экзогенных процессов (холмы, овраги, дюны). По сути, деятельность эндогенных и экзогенных факторов направлена друг на друга. Эндогенные отвечают за создание крупных форм рельефа, а экзогенные сглаживают их.
Силикатный расплав земной коры (магма) после выветривания переходит в осадочные породы. Проходя через подвижныеслои земной коры, они опускаются вглубь земного шара, где плавятся и обращаются в магму. Она снова извергается на поверхность и, после застывания, превращается в магматические породы.
Так, большой круговорот обеспечивает постоянный обмен вещества между биосферой и глубинами Земли.
Биохимический
Биогеохимический или малый круговорот осуществляется благодаря взаимодействию всего живого. Отличие от геологического состоит в том, что малый ограничен границами биосферы.
Биохимический круговорот в биосфере
Благодаря солнечной энергии здесь идет важный процесс — фотосинтез. При этом органические вещества продуцируются автотрофами, путем синтеза из неорганических. Далее они поглощаются гетеротрофами. После, отмершие тела животных и растений минерализуются (превращаются в неорганические продукты). Полученные неорганические вещества снова используются автотрофными организмами.
Малый круговорот веществ делится на две составляющие:
- Резервный фонд — та доля веществ, что еще не используется живыми особями;
- обменный фонд — небольшая доля вещества, задействованная в обменных процессах.
Резервный фонд делится на 2 вида:
- Газового типа — это резервный фонд воздушной и водной среды (задействованы следующие элементы: C, O, N);
- осадочного типа — резервный фонд, что находится в твердой оболочке земли (задействованы следующие элементы: P, Ca, Fe).
Интенсивные обменные процессы возможны при достаточном поступлении воды и оптимальном температурном режиме. Поэтому в тропических широтах круговорот протекает быстрее, чем в северных.
Какую функцию выполняет круговорот веществ в биосфере?
Единство биосферы поддерживается круговоротом вещества и энергии. Постоянное их взаимодействие поддерживает жизнь на всей планете. Углерод — один из незаменимых элементов живых существ. Круговорот углерода поддерживается за счет деятельности представителей растительного мира.
Углерод вступает в круговорот веществ в биосфере и завершает его в форме углекислого газа. Во время фотосинтеза из атмосферы поглощается диоксид углерода, который превращается фотосинтезирующими организмами в углеводы. Назад возвращается CO2 в процессе дыхания.
Азот — важный элемент, структурная часть ДНК, АТФ, белков. Он в большей мере представлен молекулярным азотом, и в таком виде не усваивается растениями. Круговороту азота способствуют бактерии и цианобактерии. Они могут переводить молекулы N в соединения, которые доступны для растений. После гибели органика поддается действию сапрогенных бактерий и расщепляется до аммиака. Часть которого подымается в верхние слои атмосферы и вместе с диоксидом углерода удерживает тепло планеты.
Функция и значение живых организмов
Живые организмы в круговороте веществ
Все живое участвует в круговороте веществ, при этом усваивая одни вещества и выделяя другие. Существует ряд функций, которые выполняют живые организмы.
- Энергетическая
- Газовая
- Концетрационная
- Окислительно-востановительная
- Деструктивная
- Транспортная
- Средообразующая
Роль редуцентов в круговороте веществ
Редуценты в процессе круговорота веществ возвращают минералы и водные ресурсы в почву, при этом они становятся доступными для автотрофных организмов. Таким образом, вся живая природа не может существовать без редуцентов. Типичными представителями редуцентов являются грибы и бактерии.
Значение бактерий
Бактерии в круговороте веществ в биосфере играют огромную роль. Значимость микроорганизмов определяется, главным образом, их широкой распространённостью, быстрыми обменными процессами.
Бактерии разлагают органические соединения отмерших растений и освобождают в биосферу углерод. Также бактерии способны осуществлять химические реакции, недоступные для других живых существ (азотфиксирующие бактерии).
Какова роль грибов в круговороте веществ в биосфере?
Они превращают органические соединения в неорганические, которые становятся источником питания для растений. Также некоторые грибы участвуют в почвообразовании. Накопившаяся органика в теле гриба после его отмирания превращается в перегной.
Источник
Круговорот веществ в биосфере: вода, углерод, кислород, азот
Биосфера Земли – это подвижная динамическая система, которая постоянно обменивается с другими геологическими оболочками как химическими элементами, так и энергией. Круговорот веществ в биосфере носит непрерывный характер и происходит при участии живых организмов. Его еще называют биогеохимическим циклом.
Содержание
История открытия
Изучение глобальных природных циклов началось в первой половине XIX века. В 1809 году знаменитый французский естествоиспытатель Ламарк кратко описал концепцию биосферы.
В середине XIX столетия известные химики Буссенго и Либих сформулировали основные принципы круговорота веществ. В 1875 году австрийский геолог Зюсс впервые ввел в научный обиход термин «биосфера».
Основоположником учения о биосфере и биогеохимических циклах считается выдающийся российский ученый Владимир Вернадский. Он первый указал на неразрывную связь между живой и неживой природой и оценил ключевую роль организмов в преобразовании облика планеты.
Ученый предположил, что биологический оборот вещества – это главный фактор миграции химических элементов.
Виды круговоротов
Химические вещества, которые доступны для живых организмов в биосфере, ограничены. Поэтому только цикличность процессов позволяет жизни непрерывно существовать и развиваться на протяжении миллиарда лет.
Различают три круговорота:
- биологический;
- геологический;
- антропогенный.
Геологический или большой круговорот происходит под воздействием солнечной, гравитационной и внутренней энергии планеты, излучения. Организмы не принимают в нем участия. Он работает на протяжении всей геологической истории планеты.
После появления первых живых организмов на планете запустился биологический круговорот – его еще называют малым. Он представляет собой непрерывный процесс превращения элементов и веществ.
Биотический круговорот ограничен границами биосферы. Для растений и животных наиболее важны биогенные циклы воды, углерода, фосфора, азота, серы.
Совокупность биологических и геологических процессов составляет биогеохимический цикл.
Антропогенный круговорот – следствие вмешательства человека. Здесь есть две составляющие: одна из них связана с биологической природой человека, вторая – с его деятельностью.
Значение и суть циклов
Биогеохимический цикл – это сложный комплекс перемещения различных веществ в биосфере и других геологических оболочках. Такие циклы обеспечивают постоянство биосферы, дают возможность для ее саморегуляции.
Любой подобный цикл не замкнут полностью – обратимость основных химических элементов составляет примерно 95%. Несбалансированный круговорот веществ – одна основных особенностей подобных циклов, которая имеет планетарное значение.
Солнце – главный источник энергии, обеспечивающий круговорот веществ. Это основная движущая сила биогеохимических циклов.
Большой круговорот перераспределяет элементы между биосферой и глубокими слоями планеты. Он связан с вулканической активностью, перемещением огромных воздушных и водных масс, процессами разрушения пород.
Важнейшим фактором, влияющим на перемещение веществ и превращение энергии, являются живые организмы.
Растения-автотрофы, используя энергию фотосинтеза, превращают неорганические соединения в органические, которые затем используют консументы и деструкторы. Биологический круговорот приводит к перемещению и перераспределению огромного количества химических веществ.
За миллиарды лет эволюции живые организмы существенно изменили облик планеты. Они насытили атмосферу кислородом и азотом, создали огромные осадочные отложения, изменили ландшафты, образовали почву.
Резервный и обменный фонды
В биологическом круговороте веществ участвуют 30-40 элементов периодической системы. Некоторые из них, включая углерод, азот, кислород, нужны организмам в значительных количествах, другие – в самых минимальных.
Необходимые вещества практически никогда не бывают распределены в природе равномерно, нередко они находятся в малопригодной форме. Элементы, участвующие в процессе круговорота веществ, могут быть в составе одного из двух фондов:
- резервного;
- обменного.
Первый обладает значительной массой, но практически не связан с биосферой. Второй – имеет меньший объем, но непосредственно связан с живыми организмами и энергично взаимодействует с ними. Газообразные вещества имеют резервный фонд в воде и атмосфере, а элементы осадочного цикла – в коре.
Редуценты и их функции
Редуценты – это организмы, которые разлагают биологические останки, превращая их в простейшие соединения. Тем самым они возвращают полезные элементы и воду в круговорот веществ и энергии. К этой группе в основном относятся грибы и бактерии.
Обменный фонд элементов, из которого обеспечивают свои потребности большинство организмов, может пополняться двумя путями:
- при первичной экскреции;
- при разложении останков редуцентами.
Второй путь пополнения обменного фонда особенно важен для биоценозов степей, лесов, пастбищ. Поэтому грибы и бактерии, включаясь в круговорот веществ, выполняют важнейшую работу.
Важнейшие циклы
В биогеохимическом цикле участвуют многие химические элементы. Самыми важными из них считаются: круговорот кислорода, азота, углерода, водорода, серы, фосфора, а также некоторых металлов.
Первые четыре элемента требуются в особенно больших количествах – из них строятся большинство биологических молекул.
Не менее важен круговорот серы и круговорот фосфора – эти элементы включены в состав белков, ДНК и АТФ.
Живые организмы активно участвуют в круговороте воды в природе. Растения используют ее в процессе фотосинтеза, а затем выделяют при дыхании. Вода нужна животным и другим гетеротрофам.
Ежегодно в цикл вовлекается около 500 тыс. куб. км воды. Схема ее круговорота замкнута, в ее состав входит нескольких этапов:
- испарение воды;
- выпадение в виде осадков;
- перенос в реки и другие водоемы.
Вода не только необходима для метаболизма, с ее помощью осуществляется растворение и перенос элементов и соединений. Для круговорота воды характерна высокая скорость обновления.
Углерод
Углерод – настоящая основа жизни на планете. В схему его круговорота в природе вовлечены все биологические объекты.
Основным резервуаром этого элемента является углекислый газ воздуха. В процессе фотосинтеза автотрофы продуцируют из него углеводы, которыми питаются другие организмы. Можно сказать, что растения – это движущая сила данного цикла в биосфере. Автотрофы замыкают круг, возвращая в процессе дыхания CO2 в атмосферу.
Углекислый газ из атмосферы – это обменный фонд углерода для водорослей и наземных растений. Ученые подсчитали, что живые организмы за восемь лет прогоняют через себя весь углерод воздуха.
Значительный запас этого элемента скрыт в виде угля, нефти, газа, осадочных пород. В его круговороте велика роль антропогенного фактора. За последние десятилетия благодаря нашей деятельности в атмосферу попали миллионы тонн углерода.
Этот элемент содержится в белках, АТФ, хлорофилле и ДНК, поэтому все организмы принимают активное участие в схеме круговорота азота.
Главным резервным фондом свободного азота в биосфере является атмосфера, где он содержится в газообразном состоянии. В таком виде он недоступен для растений, которые могут усваивать его только в виде ионов или сложных соединений. Ключевую роль в круговороте азота в природе играют микроорганизмы, которые улавливают этот элемент из воздуха, а затем нитрифицируют его.
Растения поглощают нитраты, превращая их в аминокислоты, затем они передаются по пищевой цепочке.
Без бактерий, улавливающих азот из воздуха, жизнь на планете практически прекратиться.
В последние время на круговорот азота все большее влияние оказывает человек.
Этот элемент находится в составе аминокислот и ряда других биологических молекул, поэтому круговорот серы так важен для живых организмов.
Резервуаром элемента являются сульфиды горных пород. Ключевую роль в схеме круговорота серы в природе играют микроорганизмы, которые превращают серные соединения в сульфаты. Это единственная форма, пригодная для усвоения растениями. В дальнейшем элемент следуют по пищевой цепи.
Сера скапливается в океанах, куда попадает с речными стоками.
В последние годы на круговорот серы все большее влияние оказывает деятельность человека. Это происходит потому, что выбросы предприятий принимают все более угрожающие масштабы.
Фосфор
Фосфор входит в состав многих органических соединений: аминокислот, АТФ, нуклеиновых кислот. Поэтому круговорот фосфора чрезвычайно важен для биосферы.
Резервуаром этого элемента служат отложения и горные породы. Он может усваиваться растениями исключительно в виде ионов PO 3 4 + . Дальше он потребляется животными.
Круговорот фосфора в природе имеет одну особенность. Соединения элемента, попав в океан, опускаются на дно и превращаются в осадочные породы. Следовательно, круговорот фосфора в биосфере постоянно уменьшается.
Кислород
Этот элемент играет ключевую роль в процессах клеточного дыхания, поэтому круговорот кислорода так важен для биосферы. Его главными продуцентами являются зеленые растения – кислород образуется в процессе фотосинтеза. Все остальные организмы на нашей планете потребляют данный элемент.
Круговорот кислорода в биосфере начинается с молекул хлорофилла, где он появляется в качестве побочного продукта реакции фотолиза. Затем растения выделяют газ в атмосферу, где он расходуется на процессы дыхания и окисления. Весь кислород воздуха имеет биогенное происхождение. Его природным резервуаром служит вода.
В последние столетия на круговорот кислорода в природе активно влияет человек. Он сжигает большое количество этого газа при использовании ископаемого топлива.
Свинец
Свинец – это тяжелый токсичный элемент, который появился в земной коре в результате подъема из мантии и радиоактивного распада урана и тория. Его основной природный резервуар – горные породы. При их разрушении происходит перенос свинца в почву и воду, а потом – в живые организмы.
Существуют строгие нормы содержания свинца в воде, пище и воздухе. Их превышение грозит серьезным отравлением, в том числе и с летальным исходом. Опасны и многочисленные сложные вещества, содержащие этот металл.
Сейчас основным источником свинца является антропогенное загрязнение.
Ртуть
Это тяжелый и очень ядовитый металл, который не относится к биогенным элементам. В земной коре этот элемент встречается довольно редко, хотя и в очень концентрированной форме. В биосферу ртуть может попадать в газообразной форме или в виде растворов.
В небольших количествах этот металл входит в состав нефти.
Ртуть широко используется в промышленности, поэтому главный источник попадания этого металла в биосферу – выбросы с производств.
Из-за высокой токсичности ртути за ее оборотом осуществляется жесткий контроль.
Железо
Железо является одним из самых распространенных химических элементов в природе. В чистом виде оно практически не встречается, чаще всего этот металл находят в виде сульфидов, оксидов или силикатов.
Железо – самый популярный и используемый металл, велико и его биологическое значение. Он входит в состав дыхательных ферментов, которые осуществляют перенос кислорода к тканям. У человека и других животных к ним относится гемоглобин. Он обладает способностью обратимо связываться с кислородом.
Происхождение железа – наглядный пример воздействия живых организмов на неорганическое вещество. Большинство существующих месторождений железа – продукт жизнедеятельности железобактерий. Эти организмы окисляют металл до гидроксида, получая при этом энергию.
Скорость биогеохимических процессов
В природе все круговороты веществ протекают с разной скоростью. На нее влияет множество факторов. Например, форма нахождения элемента, активность его взаимодействия, роль в метаболических процессах и многое другое.
Круговорот кислорода занимает примерно 2 тыс. лет. За этот срок весь газ из атмосферы проходит через живое вещество. Скорость круговорота воды может достигать 2 млн лет, причем время обновления сильно зависит от ее местонахождения (грунт, ледники или атмосфера). Еще больше времени занимают циклы более редких элементов. Например, круговорот фосфора занимает многие миллионы лет.
Источник
Круговорот биогенных элементов в биосфере. Биомасса и продуктивность вида
Вопрос 1. Какие типы организмов играют основную роль в поддержании круговорота биогенных элементов?
Биогенными называют находящиеся в экосистеме и необходимые для ее жизни элементы — макротрофные и микротрофные. Они постоянно связываются, входя в состав биомассы экосистемы, что снижает их количество, остающееся в среде экосистемы. Если бы организмы не разлагались благодаря деятельности редуцентов (комплекс организмов, разлагающих мертвое органическое вещество до минеральных соединений.), то запас питательных веществ исчерпался бы и жизнь экосистемы прекратилась. Поэтому можно утверждать, что именно редуценты играют основную роль в поддержании круговорота биогенных элементов.
Вопрос 2. Существует ли строгая связь между биомассой, или продуктивностью, вида и его значением в поддержании функционирования сообщества?
Биомасса — это суммарная масса особей сообщества организмов, произведенная за единицу времени и соотнесенная к единице площади или объема местообитания данного вида. Продукция — это суммарная биомасса, образованная за определенное время сообществом данного вида. Популяции многих организмов накапливают и удерживают биогенные вещества, необходимые для поддержания жизни, играя тем самым роль «посредника» в обмене веществ между живой и неживой природой. Целостность биогеоценозов определяет их важнейшее свойство — самовоспроизводство. Живые организмы питаются, растут, размножаются, используя энергию и пищу, получаемую из среды обитания. В свою очередь, живые организмы в процессе жизнедеятельности воссоздают свою среду обитания. Возникающее равновесие между организмами и средой обитания в биогеоценозе является условием проявления устойчивости экосистемы. На уровне экосистем набор видов, формы взаимодействия между популяциями разных видов, трофические сети отражают приспособленность организмов к условиям среды и направлены на устойчивое поддержание круговорота веществ в данных условиях. Например, моллюски, фильтруя воду и извлекая оттуда мелкие организмы и их остатки, захватывают и удерживают большое количество фосфора. Несмотря на то, что роль моллюсков в пищевых цепях прибрежных морских сообществ невелика (они не образуют плотных скоплений с высокой биомассой, их пищевая ценность невысока), эти организмы имеют первостепенное значение как фактор, позволяющий сохранить плодородие той зоны моря, где они обитают. Аналогична ситуация с бобовыми растениями, которые благодаря клубеньковым бактериям, живущим на их корнях, способствуют фиксации в почве азота.
Источник