Круговорот азота в природе поэтапно

Круговорот азота в природе

При гниении органических веществ значительная часть содержащегося в них азота превращается в аммиак, который под влиянием живущих в почве нитрифицирующих бактерий окисляется затем в азотную кислоту. Последняя, вступая в реакцию с находящимися в почве солями угольной кислоты, например с СаСО3, образует селитру:

Некоторая же часть органического азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется также при горении органических веществ, при сжигании дров, каменного угля, торфа и т. д. Кроме того, существуют бактерии, которые при недостаточном доступе кислорода могут отнимать кислород от солей азотной кислоты, разрушая их с выделением свободного азота. Деятельность этих денитрифицирующих бактерий приводит к тому, что часть связанного азота из доступной для зеленых растений формы (нитраты) переходит в недоступную (свободный азот).

Таким образом, круговорот азота в природе, входивший в состав погибших растений, возвращается не весь обратно в почву; часть его постоянно выделяется в свободном виде и, следовательно, теряется для растений. Непрерывная убыль минеральных азотных соединений давно должна была бы привести к полному прекращению жизни на земле, если бы не существовали в природе процессы, возмещающие потери азота.

К числу таких процессов относятся прежде всего происходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество окислов азота; последние с водой дают азотную кислоту, превращающуюся в почве в селитры. Другим источником пополнения азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот.

Некоторые из этих бактерий поселяются на корнях растений из семейства бобовых, вызывая образование характерных вздутий — «клубеньков», почему они и получили название клубеньковых бактерий (рис. 100). Усваивая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения в свою очередь превращают последние в белки и другие сложные вещества. Поэтому бобовые растения в отличие от остальных могут прекрасно развиваться на почвах, почти не содержащих азотных соединений.

Деятельность бактерий, усваивающих атмосферный азот, является главной причиной того, что количество связанного азота в почве остается более или менее постоянным, несмотря на потери, происходящие при разложении азотных соединений. Это разложение возмещается новым образованием азотных соединений, и таким образом круговорот азота в природе совершается непрерывно (рис. 101).

Источник



Круговорот азота в природе

Азот (или нитроген «N») – это один из важнейших элементов, который содержится в биосфере, и совершат круговорот. Около 80% воздуха содержит этот элемент, в котором два атома соединены в молекулу N2. Связь этих атомов весьма прочная. Азот, который находится в «связанном» состоянии, используется всеми живыми существами. Когда молекулы нитрогена расщепляются, атомы N принимают участие в различных реакциях, соединяясь с атомами иных элементов. Довольно часто N соединяется с оксигеном. Поскольку в таких веществах связь нитрогена с другими атомами весьма слабая, то он хорошо усваивается живыми организмами.

Как протекает круговорот нитрогена

Нитроген циркулирует в окружающей среде по путям замкнутым и взаимосвязанным. В первую очередь, N выделяется при распаде веществ в грунте. Когда растения попадают в почву, живые организмы извлекают из них азот, благодаря чему он превращается в молекулы, используемые для процессов обмена веществ. Оставшиеся атомы соединяются с атомами иных элементов, после чего освобождаются в виде ионов аммония либо аммиака. Затем азот связывается другими веществами, после чего образуются нитраты, которые поступают в растения. В результате N участвует в появлении молекул. Когда травы, кустарники, деревья и другая флора отмирает, попадает в землю, нитроген снова возвращается в грунт, после чего круговорот наступает снова. Азот теряется, если входит в состав осадочных веществ, преобразуется в минералы и породы, либо при деятельности денитрифицирующих бактерий.

Читайте:  Сущность и типология глобальных проблем

Нитроген в природе

В воздухе содержится не около 4 квадриллионов тонн N, а в Мировом океане – примерно 20 трлн. тонн. Та часть нитрогена, имеющаяся в организмах живых существ, составляет примерно 100 млн. тонн. Из них 4 миллиона тонн находится во флоре и фауне, а остальные 96 миллионов тонн – в микроорганизмах. Таким образом, значительная часть нитрогена присутствует в бактериях, благодаря которым N связывается. Ежегодно во время различных процессов связывается 100-150 тонн нитрогена. Наибольшее количество этого элемента есть в минеральных удобрениях, которые производят люди.

Таким образом, цикл круговорота N – это неотъемлемая часть природных процессов. Благодаря этому вытекают различные изменения. В результате антропогенной деятельности происходит изменение круговорота азота в среде, но пока что это не представляет большой опасности для окружающей среды.

Источник

Круговорот азота в природе. Свойства азота. Роль азота в природе

Одним из самых распространенных химических элементов в окружающей среде является азот. Количество азота в атмосфере велико – четыре пятых атмосферы состоит из этого химического элемента. Большая часть элемента пребывает в свободной форме, при котором два атома образуют молекулу N2. Из-за достаточно прочной связи между атомами в молекуле использовать такое соединение напрямую не представляется возможным.

Чтобы живые организмы могли полноценно усваивать этот химический элемент, его нужно перевести в «связанное» состояние. В таком состоянии азот представляет собой заряженный нитрат-ион NO3-, в таком виде он может усваиваться растениями.

Круговорот азота в природе невозможен без процесса «связывания», так как именно расщепление молекулы N2 дает возможность поддерживать различные жизненные процессы на нашей планете.

Характеристики азота

Азот является бесцветным неядовитым газом, который большей частью находится в природе в свободном (несвязанном) состоянии. Это основная часть атмосферы – почти 80% ее занимает молекулярное вещество. В молекулярном виде азот бесполезен для живой природы — молекулы его при нормальных условиях химически реагируют только с литием. Зато значение азота в природе биосферы трудно переоценить. Это вещество является неотъемлемой частью любой, даже самой простой молекулы белка. А ведь именно белок является необходимым элементом всех живых организмов.

Как происходит круговорот

Круговорот азота в природе, по сути, является цепочкой замкнутых взаимосвязанных путей, которыми азот циркулирует в биосфере Земли. В природе основным поставщиком этого связанного элемента выступают различные микроорганизмы. Именно благодаря микроскопическим труженикам от 90 до 140 млн. тонн иона азота переходит в нужное для биосферы состояние.

Нахождение азота в природе во многом связано с жизнедеятельностью бактерий и водорослей. Круговорот N2 в природе берет свое начало в деятельности различных микроорганизмов, которые извлекают азот из разлагающихся отходов. Одна часть элемента преобразуется в молекулы, необходимые для существования этих микроорганизмов. Другая часть высвобождается в виде ионов аммония и молекул аммиака. Различные разновидности бактерий переводят азот из этих веществ в форму нитратов. Азотистые соединения в виде удобрения усваиваются растениями, а через них и животными. После смерти организма микроэлемент возвращается в почву, чтобы заново совершить круговорот азота в природе. Схема движения азота представлена ниже.

Во время совершения круговорота N2 может включаться в состав неорганических отложений или высвобождаться в результате деятельности некоторых бактерий. Кроме этого, извержения вулканов, работа гейзеров увеличивают долю этого вещества в земной атмосфере.

Применение азота в сельском хозяйстве

Удобряя землю азотистыми соединениями из расчета — килограмм удобрений на гектар земли, можно повысить урожайность зерновых культур на несколько процентов.
В сельском хозяйстве в виде урожая азот выносится в количестве 1 млн. тонн, при этом азотистых удобрений используется в два раза меньше. Несмотря на высокую рентабельность использования минеральных удобрений, потребности растений в этом веществе покрываются искусственным путем всего на 20-25%. Остальное его количество извлекается из грунта за счет биологической фиксации (естественные удобрения). Дальнейшее повышение урожайности будет зависеть лишь от рационального применения навоза, наращивания производства минеральных удобрений и эффективного использования «биологического» (произведенного микроорганизмами) связанного азота.

Читайте:  Природа растения и животные Еврейской автономной области

Применение азота в промышленности

Применяется азот и в промышленности. Большая часть синтезированного вещества приходится на производство аммиака, взрывчатых систем, различных красителей. Применяется он и в обрабатывающей промышленности – например, при обработке кокса. Свойства азота широко известны и учитываются при производстве различных пищевых добавок. Жидкий азот – отличный хладагент и широко применяется для заморозки продуктов питания. Но все равно основным способом применения его является производство минеральных удобрений.

Самые известные бактерии, преобразующие азот, содержатся в клубнях растений семейства бобовых.

Полезные свойства азота помогают повышать плодородие грунта: в поле сначала сеют чечевицу, горох или фасоль, потом растения запахивают в землю. Затем на этом месте выращивают другие культуры, которые могут использовать азот в качестве естественного удобрения.

Минеральные удобрения

Но природного азота, пригодного в качестве удобрений, оказалось недостаточно для поддержания урожайности. И люди начали использовать минеральные удобрения, включающие в себя связанный азот.

Технология связывания азота в промышленных масштабах была открыта немецкими военными учеными накануне Первой мировой войны. Тогда была разработана схема производства аммиака для нужд оборонной промышленности. Доработав технологию, ученые придумали надежную схему производства связанного азота для сельского хозяйства. Сейчас аграриями применяется более 80 млн. тонн связанного азота для выращивания продовольственных культур.

Природный связанный азот

Удивительно, но определенная часть атмосферного азота связывается во время грозы. Вспышки молний происходят гораздо чаще, чем принято думать. В течение 10 секунд в мире сверкает около пятисот молний. Разряд электричества разогревает вокруг себя атмосферу, азот соединяется с кислородом. Происходит реакция горения азота, на выходе которой и получаются различные виды соединений азота с кислородом. Это довольно красивая форма связывания азота, но она высвобождает только около 10 млн. тонн в год.

Искусственный связанный азот

Как было написано выше, основным источником азота являются минеральные удобрения, которые активно используются в сельском хозяйстве большинства стран мира. Сгорание всех видов ископаемого топлива (уголь, газ, нефтяные производные) также приводит к связыванию свободного азота. Помимо прямого сгорания, при работе двигателей и электрогенераторов также возникает теплота, необходимая для реакции азота с кислородом. В общем, в течение года при сжигании получается около 20 миллионов тонн азота, пригодного для биосферы.

Заключение

Как происходит круговорот азота в природе? Схема этого движения может быть представлена наглядно. Например, можно вообразить, что вся биосфера представляет собой две сообщающиеся между собой емкости. Большая ёмкость представляет собой нахождение азота в природе главным образом в гидросфере и атмосфере. Очень маленькая содержит азот, который является частью жизнедеятельности. Узкий проход соединяет обе ёмкости, в нем азот тем или иным образом переходит в связанное состояние. В естественной среде именно через такие проходы азот попадает в живые организмы и становится частью неживой природы после своей гибели.

За сравнительно короткий период времени деятельность человека стала влиять на уровень N2 в естественной среде. Роль азота в природе до конца еще не изучена. Уже сейчас ясно, что каждая экологическая система способна усвоить лишь определенное количество этого вещества. Излишек азота в любой экосистеме приводит к чрезмерному росту растений, засоренности рек и водоемов.

Такая проблема называется эвтрофикацией – загрязнением водорослями. При возникновении этой проблемы водоросли затемняют водоем, вытесняя из него конкурирующие формы жизни. После гибели большого количества водорослей понадобится весь кислород, содержащийся в воде, чтобы остатки растений смогли разложиться. Из бедных кислородом водоемов уходит рыба, ракообразные и другие животные. Вода заболачивается и через несколько лет покрывается тиной. Озеро или пруд превращается в мертвое болото.

Читайте:  Какие слова обозначают явления природы

Дальнейшее изучение круговорота азота в природе поможет предотвратить последствия таких проблем и соблюсти баланс между хозяйственной деятельностью человека и природными экосистемами.

Источник

Круговорот азота в природе поэтапно

Газообразный азот (N2) в атмосфере крайне инертен, иными словами, необходимо очень большое количество энергии, чтобы связи в молекуле азота (N2) разорвались и образовались другие соединения, например оксиды. Однако азот является важнейшим компонентом биологических молекул, таких как белки, нуклеиновые кислоты и т. д. Переводить атмосферный азот в доступную для организмов форму (нитриты и нитраты) способны лишь некоторые бактерии. Этот процесс называется азотфиксацией и представляет собой основной путь поступления азота в биотический компонент экосистемы.

Азотфиксация

Азотфиксация — энергоемкий процесс, поскольку требует разрушения очень прочной связи между двумя атомами азота в его молекуле. Бактерии используют для этого фермент нитро-геназу и энергию, заключенную в АТФ. Неферментативная азотфиксация требует гораздо больше энергии, получаемой в промышленности за счет сгорания ископаемого топлива, а в атмосфере в результате действия ионизирующих факторов, например молний и космического излучения.

Азот так важен для плодородия почвы, и потребность в нем сельского хозяйства так велика, что ежегодно на химических заводах производятся колоссальные количества аммиака, который применяется в составе азотных удобрений, таких как нитрат аммония (NH4NO3) или мочевина [CO(NH2)2].

Сейчас масштабы промышленной азотфиксации сравнимы с природными, но мы до сих пор плохо представляем возможные последствия постепенного накопления в биосфере доступных организмам соединений азота. Компенсационных механизмов, возвращающих связываемый нами азот в атмосферный пул, не существует.

круговорот азотаКруговорот азота. Азот составляет 79% объема атмосферы — главного резервуара этого элемента.

Относительно небольшое количество фиксированного азота (5-10%) дает ионизация в атмосфере. Образующиеся оксиды азота, взаимодействуя с дождевой водой, дают соответствующие кислоты, которые, попав в почву, в конечном итоге превращаются в нитраты.

Вероятно, главный природный источник фиксированного азота — представители семейства бобовых, например клевер, соя, люцерна, горох. На корнях бобовых имеются характерные утолщения, называемые клубеньками, в которых внутриклеточно живут азотфиксирующие бактерии рода Rhizobium. Этот симбиоз мутуалисти-чен, поскольку растение получает от бактерий фиксированный азот в форме аммиака, а взамен снабжает их энергией и некоторыми органическими веществами, например углеводами. В пересчете на единицу площади клубеньковые бактерии могут дать в 100 раз больше фиксированного азота, чем свободноживущие. Неудивительно, что бобовые растения часто высевают для обогащения почвы этим элементом, получая заодно и урожай высококачественных кормовых трав.

Все азотфиксаторы связывают азот в форме аммиака, но он сразу же используется для синтеза органических соединений, в первую очередь белков.

Разложение и денитрификация

Большинство растений в качестве источника азота используют нитратионы. Животные в свою очередь прямо или косвенно получают усвояемый азот из растений. На рис. 10.11 показано, как образуются нитраты после разложения белка мертвых тканей сапротрофными бактериями и грибами. Этот процесс включает окислительные реакции с участием кислорода и аэробных бактерий. Белки сначала расщепляются до аминокислот, а затем аминокислоты дают аммиак. Этот же продукт образуется при разложении экскретов и фекалий животных. Хемосинтезируютие бактерии Nitrosomonas и Nitrobacter осуществляют так называемую нитрификацию — поэтапно окисляют аммиак до нитратов.

Денитрификация

В некотором смысле процессом, обратным нитрификации, является денитрификация, также осуществляемая бактериями, которые в результате понижают плодородие почвы. Денитрификация происходит в анаэробных условиях, когда нитраты используются при дыхании вместо кислорода в качестве окислителя органических соединений (акцептора электронов). Сами нитраты при этом восстанавливаются, обычно до азота. Следовательно, денитрифицирующие бактерии относятся к факультативным аэробам.

Источник