Концепция водорослевых обрастаний на растениях
Концепция водорослевых обрастаний на растениях
Юрий, я про "баланс" например из темы "Пушок" каторый вроде бы и исакать знаем как и делаем вроде то что доктор прописал, а почему-то не
срабатывает.
Но и термин "созревшей воды" можно будет обсудить приминительно к водорослям и их появлению либо отсутствию.
В общем думаю, чем больше моментов ключевых найдем и рассмотрим, тем проще будет аквариумисту каторый борется с водорослями
найти подходящий именно для него план действий или бездействий в этой извечной борьбе.
п.с. Спасибо за поддержку!
Концепция водорослевых обрастаний на растениях
Сообщение Andrey (nsk) » 20 июн 2011, 10:50
на фото видны листья Sagittaria subulata пораженные водорослью Oedogonium, при посадке листья были без обрастаний,
ближе виден лист Cryptocoryne wendtii var. jahnelii без водорослевых обрастаний, растения находятся рядом в одних и
тех же условиях, в связи с чем так происходит, почему не обрастает криптокорина?
Концепция водорослевых обрастаний на растениях
Сообщение Ю.В. » 20 июн 2011, 11:23
Концепция водорослевых обрастаний на растениях
Сообщение Селитра » 20 июн 2011, 11:59
Концепция водорослевых обрастаний на растениях
Сообщение Andrey (nsk) » 20 июн 2011, 12:44
Концепция водорослевых обрастаний на растениях
Сообщение flicker » 20 июн 2011, 13:00
По поводу избирательности обрастаний: замечено, что при прочих равных условиях водорослями в меньшей степени покрываются быстровегетирующие (здоровые) растения. Процесс роста — не только образование новых клеток, но и замещение ими старых (ороговевших). Если этот процесс замедлен, то на "старых" участках растений процветают водоросли.
По поводу лимитирующего фактора не раз читал и замечал на практике, что лимитирующим фактором должно быть освещение.
Если кто не согласен или я где-то не прав, поправляйте, подискутируем
Концепция водорослевых обрастаний на растениях
Сообщение Andrey (nsk) » 20 июн 2011, 13:47
если нет цели лимитировать рост растений, то лимитирующего фактора может не быть вовсе.
(откорректировал) буду избегать безоговорочных высказываний)
п.с. думается, Ирина имела в виду лимитирующий фактор стабильной работы системы(аквариума) в целом.
Источник
Строение водорослей
Водоросли относятся к низшим растениям, наиболее примитивным: у них отсутствует разделение организма на стебель, корень и листья. Спешу заметить, что термин «низшие растения» — отжившее понятие, использовавшееся в ботанике до второй половины XX века.
Современная биология не считает дифференциацию тканей определяющим различием, сейчас существенным считают фундаментальные различия в строение клеток, обмене веществ. Тем не менее, во многих устаревших пособиях этот термин используется, и я обязан предупредить вас о нем.
Наука о водорослях называется альгология (от лат. alga — морская трава, водоросль и греч. λόγος — учение).
Среди водорослей есть одноклеточные и многоклеточные, некоторые водоросли достигают в длину 100-200 метров. Способ питания водорослей автотрофный: они синтезируют органические вещества в процессе фотосинтеза. Солнечный свет, проходя через толщу воды, рассеивается, что делает фотосинтез с увеличением глубины все труднее и труднее. Поэтому кроме хлорофилла они часто имеют и другие пигменты.
Клетки водорослей характеризуются наличием клеточной стенки (из целлюлозы и гликопротеинов — от греч. glykys сладкий (углеводы) + греч. prōtos — первый, важнейший (белок)) Органоиды располагаются в цитоплазме (син. — внеядерной протоплазме), где также располагается(-ются) один или несколько хроматофоров. Размножение происходит бесполым, вегетативным или половым путем.
Тело водорослей представлено слоевищем (син. — талломом) — недифференцированным скоплением клеток. С помощью ризоидов (от др.-греч. ῥίζα — корень и εἶδος — вид) водоросли прикрепляются к субстрату (камням, коралловым полипам), функцию всасывания ризоиды не выполняют. У водорослей отсутствуют настоящие ткани, механических тканей нет, так как таллом водоросли поддерживается (парит) в толще воды. Нет проводящих тканей: каждая клетка имеет доступ к воде напрямую, так что в клетку из окружающей воды поступает кислород, а в воду удаляется углекислый газ.
Хроматофор (от греч. chroma — цвет и phoros — несущий) — органелла в клетке водоросли, аналогичная хлоропласту и осуществляющая фотосинтез. Отличается от хлоропласта упрощенным строением, меньшим размером и иным составом хлорофилла. Внешне отличаются между собой по форме, хроматофор может быть: чашевидный, спиралевидный, в виде незамкнутых колец, цилиндрические, лентовидные, дисковидные. В хроматофорах находятся пигменты, которые придают окраску растению.
Система вакуолей в клетках водорослей развита отлично, в подвижных клетках водорослей можно обнаружить пульсирующие (сократительные) вакуоли. Их основная функция — поддержание постоянного осмотического давления внутри клетки. Вообразите: в глубине океана находится клетка водоросли, в которую постоянно поступает много воды. Если бы не было таких сократительных вакуолей, то клетка просто лопнула бы, но их работа обеспечивает удаление избытка воды.
Также у многих подвижных водорослей в клетках присутствует светочувствительный глазок (стигма), что обуславливает их чувствительность к свету — фототаксис. Подвижные водоросли стремятся занять как можно более освещенное место, чтобы активно шел процесс фотосинтеза.
Жизненный цикл водорослей
Жизненные циклы водорослей разнообразны, обусловлены рядом экологических факторов. Мы разберем жизненный цикл на примере зеленой водоросли ульвы (морского салата).
Для начала отметим, что в целом жизненный цикл водорослей представляет собой чередование двух фаз: гаплоидной (гаметофита) и диплоидной (спорофита). Гаплоидной фазой называется фаза, при которой клеточные ядра содержат непарный (половинный) набор хромосом. К гаплоидной фазе всегда принадлежат гаметы: сперматозоиды, спермии (отличающиеся от сперматозоидов отсутствием жгутика), яйцеклетки.
При слиянии двух гамет: яйцеклетки (n) и спермия (n) образуется зигота (2n) из которой развивается спорофит (2n), таким образом, в спорофите восстанавливается диплоидный набор хромосом. В зооспорангии на спорофите в результате мейоза образуются зооспоры (n), которые делятся митозом, порастают и образуют мужские и женские гаметофиты (n). Клетки гаметофитов делятся митозом, образуются гаметы (n), которые сливаются в зиготу (2n), цикл замыкается.
Типы половых процессов
- Изогамия — копулирующие элементы (гаметы) не отличаются друг от друга, подвижны
- Анизогамия — от греч. anisos неравный и gamos брак (гетерогамия) — при таком типе копулирующие элементы различаются по размерам, форме, величине, поведению
- Оогамия — от др. греч. ᾠόν яйцо и γάμος брак — копулирующие элементы резко отличаются друг от друга: крупная женская гамета без жгутиков обычно с мужской мелкой подвижной гаметой. Допустимо считать оогамию в некотором смысле подтипом анизогамии.
Особо стоит выделить тип полового процесса — конъюгацию. Конъюгация отличается тем, что сливаются не гаметы, а обычные вегетативные клетки, лишенные жгутиков. Клетки соединяются друг с другом с помощью боковых выростов, формируется копуляционный (конъюгационный) канал, по которому содержимое из одной клетки перетекает в другую — образуется зигоспора. В дальнейшем из зигоспоры развивается новая водоросль.
Отметим, что зооспора представляет собой подвижную клетку, которая способна двигаться в воде с помощью жгутиков. Образуется она в зооспорангии. Зооспора участвует в бесполом размножении у многих водорослей и простейших грибов. У некоторых водорослей имеются апланоспоры (гр. aplanes неподвижный + spora семя) — неподвижные безжгутиковые споры. Зооспоры и апланоспоры выходят в окружающую среду, разрывая стенки спорангия, в котором они находятся.
Значение водорослей
В Мировом океане водоросли составляют основную часть биомассы. Именно они являются главными продуцентами (производителями) органического вещества, преобразуя в ходе фотосинтеза энергию солнечного света в энергию химических связей. Значение водорослей для человека трудно переоценить: содержащиеся в них вещества необходимы для нормального роста и развития животных и человека (к примеру, морская капуста (ламинария) отличается большим содержанием йода.)
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Источник
§ 18. Водоросли
Водоросли — самые древние растения на Земле. Они в основном живут в воде, но встречаются виды, обитающие на сырых участках почвы, коре деревьев и в других местах с повышенной влажностью.
Среди водорослей есть одноклеточные и многоклеточные растения. Водоросли относятся к низшим растениям, они не имеют ни корней, ни стеблей, ни листьев. Водоросли размножаются бесполым путём (простым делением клеток или спорами) и половым путём.
Несмотря на сравнительно простое строение, различные группы водорослей имеют свои особенности и происходят от различных предков.
Одноклеточные водоросли. Зелёные водоросли обитают в солёной и пресной воде, на суше, на поверхности деревьев, камней или зданий, в сырых, затенённых местах. Виды, живущие вне воды, в период засухи находятся в состоянии покоя. Простейшие зелёные водоросли — одноклеточные (рис. 58).
Рис. 58. Одноклеточные водоросли
Вы, очевидно, наблюдали летом «цветение» воды в лужах и прудах, а при сильном освещении и в аквариумах. «Цветущая» вода имеет изумрудный оттенок. Если зачерпнуть немного этой воды, то она окажется прозрачной, но содержащей маленькие взвешенные «частички». В капле такой воды под микроскопом хорошо видно множество различных одноклеточных зелёных водорослей, которые и придают ей изумрудный оттенок.
Во время «цветения» мелких луж или водоёмов в воде чаще всего встречается одноклеточная водоросль хламидомонада (в переводе с греческого — «простейший организм, покрытый одеждой» — оболочкой). Хламидомонада — одноклеточная зелёная водоросль грушевидной формы. Она движется в воде при помощи двух жгутиков, находящихся на переднем, более узком конце клетки (рис. 59).
Рис. 59. Хламидомонада и хлорелла
Снаружи хламидомонада покрыта прозрачной оболочкой, под которой расположены цитоплазма с ядром, красный «глазок» (светочувствительное тельце красного цвета), крупная вакуоль, заполненная клеточным соком, и две маленькие пульсирующие вакуоли. Хлорофилл и другие пигменты у хламидомонады находятся в крупной чашеобразной пластиде, которая у водорослей называется хроматофор (в переводе с греческого — «несущий свет»). Хлорофилл, содержащийся в хроматофоре, придаёт зелёную окраску всей клетке.
Ещё одна одноклеточная зелёная водоросль — хлорелла — широко распространена в пресных водоёмах и на влажных почвах (см. рис. 59). Её мелкие шаровидные клетки видны только с помощью микроскопа. Снаружи клетка хлореллы покрыта оболочкой, под которой находится цитоплазма с ядром, а в цитоплазме — зелёный хроматофор.
Строение зелёных одноклеточных водорослей
- Поместите на предметное стекло микроскопа каплю «цветущей» воды, накройте покровным стеклом.
- Рассмотрите при малом увеличении одноклеточные водоросли. Найдите хламидомонаду (тело грушевидной формы с заострённым передним концом) или хлореллу (тело шаровидной формы).
- Оттяните часть воды из-под покровного стекла полоской фильтровальной бумаги и рассмотрите клетку водоросли при большом увеличении.
- Найдите в клетке водоросли оболочку, цитоплазму, ядро, хромато-фор. Обратите внимание на форму и окраску хроматофора.
- Зарисуйте клетку и подпишите названия её частей. Правильность выполнения рисунка проверьте по рисункам учебника.
Вы, наверное, обращали внимание на зелёные налеты в нижней части деревьев, на заборах и т. п. Их образуют приспособившиеся к наземной жизни различные одноклеточные зелёные водоросли (рис. 60). Под микроскопом видны одиночные клетки или группы клеток зелёных водорослей. Единственный источник влаги для этих водорослей — атмосферные осадки (дожди и роса). При недостатке воды или при низких температурах плеврококк и другие наземные водоросли могут проводить часть жизни в состоянии покоя.
Рис. 60. Зелёные водоросли на стволе дерева
Многоклеточные зелёные водоросли. У многоклеточных представителей зелёных водорослей тело (слоевище) имеет форму нитей или плоских листовидных образований. В проточных водоёмах часто можно заметить ярко-зелёные скопления шелковистых нитей, прикреплённых к подводным камням и корягам. Это многоклеточная нитчатая зелёная водоросль улотрикс (рис. 61). Его нити состоят из ряда коротких клеток. В цитоплазме каждой из них расположены ядро и хроматофор в виде незамкнутого кольца. Клетки делятся, и нить растёт.
Рис. 61. Многоклеточные зелёные водоросли
В стоячих и медленно текущих водах часто плавают или оседают на дно скользкие ярко-зелёные комки. Они похожи на вату и образованы скоплениями нитчатой водоросли спирогиры (см. рис. 61). Вытянутые цилиндрические клетки спирогиры покрыты слизью. Внутри клеток — хроматофоры в виде спирально закрученных лент.
Многоклеточные зелёные водоросли живут также в водах морей и океанов. Примером таких водорослей может служить ульва, или морской салат, длиной около 30 см и толщиной всего две клетки (см. рис. 61).
Наиболее сложное строение в этой группе растений имеют харовые водоросли, обитающие в пресноводных водоёмах. Эти многочисленные зелёные водоросли по внешнему виду напоминают хвощи. Харовую водоросль нителлу, или блестянку гибкую, часто выращивают в аквариумах (см. рис. 61).
У харовых имеются образования, которые по форме и по выполняемым функциям напоминают корни, стебли, листья, но по строению они не имеют ничего общего с этими органами высших растений. Например, к грунту они прикрепляются с помощью бесцветных ветвистых нитевидных клеток, которые называют ризоидами (от греческих слов «риза» — корень и «эйдос» — вид).
Бурые водоросли. Бурые водоросли в основном морские растения. Общий внешний признак этих водорослей — желтовато-бурая окраска слоевищ.
Бурые водоросли — многоклеточные растения. Их длина колеблется от микроскопической до гигантской (несколько десятков метров). Слоевища этих водорослей могут быть нитевидными, шаровидными, пластинчатыми, кустообразными. Иногда они содержат воздушные пузыри, удерживающие растение в воде в вертикальном положении. К грунту бурые водоросли прикрепляются ризоидами или дисковидно разросшимся основанием слоевища.
У некоторых бурых водорослей появляются группы клеток, которые можно назвать тканями.
В наших дальневосточных морях и морях Северного Ледовитого океана растёт крупная бурая водоросль ламинария, или морская капуста (рис. 62). В прибрежной полосе Чёрного моря часто встречается бурая водоросль цистозейра (см. рис. 62).
Рис. 62. Бурые водоросли
Красные водоросли. Красные водоросли, или багрянки, — в основном многоклеточные морские растения (рис. 63). Лишь некоторые виды багрянок встречаются в пресных водоёмах. Очень немногие из красных водорослей одноклеточные.
Рис. 63. Красные водоросли
Размеры багрянок обычно колеблются от нескольких сантиметров до метра в длину. Но среди них есть и микроскопические формы. В клетках красных водорослей, кроме хлорофилла, содержатся красные и синие пигменты. В зависимости от их сочетания окраска багрянок меняется от ярко-красной до голубовато-зелёной и жёлтой.
Внешне красные водоросли весьма разнообразны: нитевидные, цилиндрические, пластинчатые и кораллопо-добные, в разной мере рассечённые и разветвлённые. Часто они очень красивы и причудливы.
В море красные водоросли встречаются повсеместно в самых разных условиях. Обычно они прикрепляются к скалам, валунам, искусственным сооружениям, а иногда и к другим водорослям. Благодаря тому что красные пигменты способны улавливать даже очень небольшое количество света, багрянки могут расти на значительных глубинах. Их можно встретить даже на глубине 100—200 м. В морях нашей страны широко распространены филлофора, порфира и др.
Значение водорослей в природе и жизни человека. Водорослями питаются рыбы и другие водные животные. Водоросли поглощают из воды углекислый газ и, как все зелёные растения, выделяют кислород, которым дышат живые организмы, обитающие в воде. Водоросли вырабатывают огромное количество кислорода, который не только растворяется в воде, но и выделяется в атмосферу.
Человек использует морские водоросли в химической промышленности (рис. 64). Из них получают йод, калийные соли, целлюлозу, спирт, уксусную кислоту и другие продукты. Водоросли используют как удобрения и употребляют на корм скоту. Из некоторых видов красных водорослей добывают студенистое вещество агар-агар, необходимое в кондитерской, хлебопекарной, бумажной и текстильной промышленности. На агар-агаре выращивают микроорганизмы для использования их в лабораторных исследованиях.
Рис. 64. Значение и использование водорослей
Во многих странах водоросли используют для приготовления разнообразных блюд. Они очень полезны, так как содержат много углеводов, витаминов, богаты иодом.
Особенно часто употребляют в пищу ламинарию (морскую капусту), ульву (морской салат), порфиру и др.
Хламидомонаду, хлореллу и другие одноклеточные зелёные водоросли применяют при биологической очистке сточных вод.
Чрезмерное размножение водорослей, например в оросительных каналах или рыборазводных прудах, может принести вред. Поэтому каналы и водоёмы приходится периодически очищать от этих растений.
Наличие водорослей — необходимое условие для нормальной жизни водоёмов. Если в них сбрасывают нечистоты, химические отходы, металлический лом, гниющую древесину и другие материалы, то это неизбежно ведёт к гибели водорослей, других растений и животных, появлению мёртвых и заражённых водоёмов.
Новые понятия
Водоросли. Хроматофор. Ризоиды. Хламидомонада. Хлорелла. Ламинария
Вопросы
- Почему водоросли относят к низшим растениям?
- Где обитают зелёные одноклеточные водоросли?
- Какое строение имеет хламидомонада?
- Где обитают и какое строение имеют зелёные многоклеточные водоросли?
- Где обитают и какое строение имеют бурые водоросли?
- Где обитают и какое строение имеют красные водоросли?
- Что такое слоевище?
- Что такое хроматофор?
- Что такое ризоиды? Почему их нельзя называть корнями?
- Какое значение имеют водоросли в природе?
- Как человек использует водоросли?
Подумайте
Почему даже у многоклеточных водорослей, имеющих большие размеры, отсутствует сосудистая система?
Задания для любознательных
Осторожно снимите зелёный налёт с коры нескольких деревьев. Приготовьте микропрепараты и изучите их под микроскопом. Рассмотрите клетки водорослей, образующих зелёный налёт. Постарайтесь установить, одним или несколькими видами водорослей он образован.
Источник
Концепция водорослевых обрастаний на растениях
Юрий, я про "баланс" например из темы "Пушок" каторый вроде бы и исакать знаем как и делаем вроде то что доктор прописал, а почему-то не
срабатывает.
Но и термин "созревшей воды" можно будет обсудить приминительно к водорослям и их появлению либо отсутствию.
В общем думаю, чем больше моментов ключевых найдем и рассмотрим, тем проще будет аквариумисту каторый борется с водорослями
найти подходящий именно для него план действий или бездействий в этой извечной борьбе.
п.с. Спасибо за поддержку!
Концепция водорослевых обрастаний на растениях
Сообщение Andrey (nsk) » 20 июн 2011, 10:50
на фото видны листья Sagittaria subulata пораженные водорослью Oedogonium, при посадке листья были без обрастаний,
ближе виден лист Cryptocoryne wendtii var. jahnelii без водорослевых обрастаний, растения находятся рядом в одних и
тех же условиях, в связи с чем так происходит, почему не обрастает криптокорина?
Концепция водорослевых обрастаний на растениях
Сообщение Ю.В. » 20 июн 2011, 11:23
Концепция водорослевых обрастаний на растениях
Сообщение Селитра » 20 июн 2011, 11:59
Концепция водорослевых обрастаний на растениях
Сообщение Andrey (nsk) » 20 июн 2011, 12:44
Концепция водорослевых обрастаний на растениях
Сообщение flicker » 20 июн 2011, 13:00
По поводу избирательности обрастаний: замечено, что при прочих равных условиях водорослями в меньшей степени покрываются быстровегетирующие (здоровые) растения. Процесс роста — не только образование новых клеток, но и замещение ими старых (ороговевших). Если этот процесс замедлен, то на "старых" участках растений процветают водоросли.
По поводу лимитирующего фактора не раз читал и замечал на практике, что лимитирующим фактором должно быть освещение.
Если кто не согласен или я где-то не прав, поправляйте, подискутируем
Концепция водорослевых обрастаний на растениях
Сообщение Andrey (nsk) » 20 июн 2011, 13:47
если нет цели лимитировать рост растений, то лимитирующего фактора может не быть вовсе.
(откорректировал) буду избегать безоговорочных высказываний)
п.с. думается, Ирина имела в виду лимитирующий фактор стабильной работы системы(аквариума) в целом.
Источник