Концепция водорослевых обрастаний на растениях

Концепция водорослевых обрастаний на растениях

Юрий, я про "баланс" например из темы "Пушок" каторый вроде бы и исакать знаем как и делаем вроде то что доктор прописал, а почему-то не
срабатывает.
Но и термин "созревшей воды" можно будет обсудить приминительно к водорослям и их появлению либо отсутствию.
В общем думаю, чем больше моментов ключевых найдем и рассмотрим, тем проще будет аквариумисту каторый борется с водорослями
найти подходящий именно для него план действий или бездействий в этой извечной борьбе.

п.с. Спасибо за поддержку!

Концепция водорослевых обрастаний на растениях

Сообщение Andrey (nsk) » 20 июн 2011, 10:50

Концепция водорослевых обрастаний на растениях - 3.jpg

на фото видны листья Sagittaria subulata пораженные водорослью Oedogonium, при посадке листья были без обрастаний,
ближе виден лист Cryptocoryne wendtii var. jahnelii без водорослевых обрастаний, растения находятся рядом в одних и
тех же условиях, в связи с чем так происходит, почему не обрастает криптокорина?

Концепция водорослевых обрастаний на растениях

Сообщение Ю.В. » 20 июн 2011, 11:23

Концепция водорослевых обрастаний на растениях

Сообщение Селитра » 20 июн 2011, 11:59

Концепция водорослевых обрастаний на растениях

Сообщение Andrey (nsk) » 20 июн 2011, 12:44

Концепция водорослевых обрастаний на растениях

Сообщение flicker » 20 июн 2011, 13:00

По поводу избирательности обрастаний: замечено, что при прочих равных условиях водорослями в меньшей степени покрываются быстровегетирующие (здоровые) растения. Процесс роста — не только образование новых клеток, но и замещение ими старых (ороговевших). Если этот процесс замедлен, то на "старых" участках растений процветают водоросли.

По поводу лимитирующего фактора не раз читал и замечал на практике, что лимитирующим фактором должно быть освещение.

Если кто не согласен или я где-то не прав, поправляйте, подискутируем

Концепция водорослевых обрастаний на растениях

Сообщение Andrey (nsk) » 20 июн 2011, 13:47

если нет цели лимитировать рост растений, то лимитирующего фактора может не быть вовсе.
(откорректировал) буду избегать безоговорочных высказываний)

п.с. думается, Ирина имела в виду лимитирующий фактор стабильной работы системы(аквариума) в целом.

Источник



Строение водорослей

Водоросли относятся к низшим растениям, наиболее примитивным: у них отсутствует разделение организма на стебель, корень и листья. Спешу заметить, что термин «низшие растения» — отжившее понятие, использовавшееся в ботанике до второй половины XX века.

Современная биология не считает дифференциацию тканей определяющим различием, сейчас существенным считают фундаментальные различия в строение клеток, обмене веществ. Тем не менее, во многих устаревших пособиях этот термин используется, и я обязан предупредить вас о нем.

Наука о водорослях называется альгология (от лат. alga — морская трава, водоросль и греч. λόγος — учение).

Строение водоросли

Среди водорослей есть одноклеточные и многоклеточные, некоторые водоросли достигают в длину 100-200 метров. Способ питания водорослей автотрофный: они синтезируют органические вещества в процессе фотосинтеза. Солнечный свет, проходя через толщу воды, рассеивается, что делает фотосинтез с увеличением глубины все труднее и труднее. Поэтому кроме хлорофилла они часто имеют и другие пигменты.

Клетки водорослей характеризуются наличием клеточной стенки (из целлюлозы и гликопротеинов — от греч. glykys сладкий (углеводы) + греч. prōtos — первый, важнейший (белок)) Органоиды располагаются в цитоплазме (син. — внеядерной протоплазме), где также располагается(-ются) один или несколько хроматофоров. Размножение происходит бесполым, вегетативным или половым путем.

Тело водорослей представлено слоевищем (син. — талломом) — недифференцированным скоплением клеток. С помощью ризоидов (от др.-греч. ῥίζα — корень и εἶδος — вид) водоросли прикрепляются к субстрату (камням, коралловым полипам), функцию всасывания ризоиды не выполняют. У водорослей отсутствуют настоящие ткани, механических тканей нет, так как таллом водоросли поддерживается (парит) в толще воды. Нет проводящих тканей: каждая клетка имеет доступ к воде напрямую, так что в клетку из окружающей воды поступает кислород, а в воду удаляется углекислый газ.

Хроматофор (от греч. chroma — цвет и phoros — несущий) — органелла в клетке водоросли, аналогичная хлоропласту и осуществляющая фотосинтез. Отличается от хлоропласта упрощенным строением, меньшим размером и иным составом хлорофилла. Внешне отличаются между собой по форме, хроматофор может быть: чашевидный, спиралевидный, в виде незамкнутых колец, цилиндрические, лентовидные, дисковидные. В хроматофорах находятся пигменты, которые придают окраску растению.

Чашевидный хроматофор

Система вакуолей в клетках водорослей развита отлично, в подвижных клетках водорослей можно обнаружить пульсирующие (сократительные) вакуоли. Их основная функция — поддержание постоянного осмотического давления внутри клетки. Вообразите: в глубине океана находится клетка водоросли, в которую постоянно поступает много воды. Если бы не было таких сократительных вакуолей, то клетка просто лопнула бы, но их работа обеспечивает удаление избытка воды.

Также у многих подвижных водорослей в клетках присутствует светочувствительный глазок (стигма), что обуславливает их чувствительность к свету — фототаксис. Подвижные водоросли стремятся занять как можно более освещенное место, чтобы активно шел процесс фотосинтеза.

Читайте:  Как ухаживать за растением в домашних условиях
Жизненный цикл водорослей

Жизненные циклы водорослей разнообразны, обусловлены рядом экологических факторов. Мы разберем жизненный цикл на примере зеленой водоросли ульвы (морского салата).

Для начала отметим, что в целом жизненный цикл водорослей представляет собой чередование двух фаз: гаплоидной (гаметофита) и диплоидной (спорофита). Гаплоидной фазой называется фаза, при которой клеточные ядра содержат непарный (половинный) набор хромосом. К гаплоидной фазе всегда принадлежат гаметы: сперматозоиды, спермии (отличающиеся от сперматозоидов отсутствием жгутика), яйцеклетки.

При слиянии двух гамет: яйцеклетки (n) и спермия (n) образуется зигота (2n) из которой развивается спорофит (2n), таким образом, в спорофите восстанавливается диплоидный набор хромосом. В зооспорангии на спорофите в результате мейоза образуются зооспоры (n), которые делятся митозом, порастают и образуют мужские и женские гаметофиты (n). Клетки гаметофитов делятся митозом, образуются гаметы (n), которые сливаются в зиготу (2n), цикл замыкается.

Жизненный цикл водорослей

Типы половых процессов
  • Изогамия — копулирующие элементы (гаметы) не отличаются друг от друга, подвижны
  • Анизогамия — от греч. anisos неравный и gamos брак (гетерогамия) — при таком типе копулирующие элементы различаются по размерам, форме, величине, поведению
  • Оогамия — от др. греч. ᾠόν яйцо и γάμος брак — копулирующие элементы резко отличаются друг от друга: крупная женская гамета без жгутиков обычно с мужской мелкой подвижной гаметой. Допустимо считать оогамию в некотором смысле подтипом анизогамии.

Особо стоит выделить тип полового процесса — конъюгацию. Конъюгация отличается тем, что сливаются не гаметы, а обычные вегетативные клетки, лишенные жгутиков. Клетки соединяются друг с другом с помощью боковых выростов, формируется копуляционный (конъюгационный) канал, по которому содержимое из одной клетки перетекает в другую — образуется зигоспора. В дальнейшем из зигоспоры развивается новая водоросль.

Жизненный цикл водорослей

Отметим, что зооспора представляет собой подвижную клетку, которая способна двигаться в воде с помощью жгутиков. Образуется она в зооспорангии. Зооспора участвует в бесполом размножении у многих водорослей и простейших грибов. У некоторых водорослей имеются апланоспоры (гр. aplanes неподвижный + spora семя) — неподвижные безжгутиковые споры. Зооспоры и апланоспоры выходят в окружающую среду, разрывая стенки спорангия, в котором они находятся.

Значение водорослей

В Мировом океане водоросли составляют основную часть биомассы. Именно они являются главными продуцентами (производителями) органического вещества, преобразуя в ходе фотосинтеза энергию солнечного света в энергию химических связей. Значение водорослей для человека трудно переоценить: содержащиеся в них вещества необходимы для нормального роста и развития животных и человека (к примеру, морская капуста (ламинария) отличается большим содержанием йода.)

Водоросли в толще воды

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

§ 18. Водоросли

Водоросли — самые древние растения на Земле. Они в основном живут в воде, но встречаются виды, обитающие на сырых участках почвы, коре деревьев и в других местах с повышенной влажностью.

Среди водорослей есть одноклеточные и многоклеточные растения. Водоросли относятся к низшим растениям, они не имеют ни корней, ни стеблей, ни листьев. Водоросли размножаются бесполым путём (простым делением клеток или спорами) и половым путём.

Несмотря на сравнительно простое строение, различные группы водорослей имеют свои особенности и происходят от различных предков.

Одноклеточные водоросли. Зелёные водоросли обитают в солёной и пресной воде, на суше, на поверхности деревьев, камней или зданий, в сырых, затенённых местах. Виды, живущие вне воды, в период засухи находятся в состоянии покоя. Простейшие зелёные водоросли — одноклеточные (рис. 58).

Одноклеточные водоросли

Рис. 58. Одноклеточные водоросли

Вы, очевидно, наблюдали летом «цветение» воды в лужах и прудах, а при сильном освещении и в аквариумах. «Цветущая» вода имеет изумрудный оттенок. Если зачерпнуть немного этой воды, то она окажется прозрачной, но содержащей маленькие взвешенные «частички». В капле такой воды под микроскопом хорошо видно множество различных одноклеточных зелёных водорослей, которые и придают ей изумрудный оттенок.

Во время «цветения» мелких луж или водоёмов в воде чаще всего встречается одноклеточная водоросль хламидомонада (в переводе с греческого — «простейший организм, покрытый одеждой» — оболочкой). Хламидомонада — одноклеточная зелёная водоросль грушевидной формы. Она движется в воде при помощи двух жгутиков, находящихся на переднем, более узком конце клетки (рис. 59).

Хламидомонада и хлорелла

Рис. 59. Хламидомонада и хлорелла

Снаружи хламидомонада покрыта прозрачной оболочкой, под которой расположены цитоплазма с ядром, красный «глазок» (светочувствительное тельце красного цвета), крупная вакуоль, заполненная клеточным соком, и две маленькие пульсирующие вакуоли. Хлорофилл и другие пигменты у хламидомонады находятся в крупной чашеобразной пластиде, которая у водорослей называется хроматофор (в переводе с греческого — «несущий свет»). Хлорофилл, содержащийся в хроматофоре, придаёт зелёную окраску всей клетке.

Читайте:  Подобрать горшок для пересадки растения

Ещё одна одноклеточная зелёная водоросль — хлорелла — широко распространена в пресных водоёмах и на влажных почвах (см. рис. 59). Её мелкие шаровидные клетки видны только с помощью микроскопа. Снаружи клетка хлореллы покрыта оболочкой, под которой находится цитоплазма с ядром, а в цитоплазме — зелёный хроматофор.

Строение зелёных одноклеточных водорослей

  1. Поместите на предметное стекло микроскопа каплю «цветущей» воды, накройте покровным стеклом.
  2. Рассмотрите при малом увеличении одноклеточные водоросли. Найдите хламидомонаду (тело грушевидной формы с заострённым передним концом) или хлореллу (тело шаровидной формы).
  3. Оттяните часть воды из-под покровного стекла полоской фильтровальной бумаги и рассмотрите клетку водоросли при большом увеличении.
  4. Найдите в клетке водоросли оболочку, цитоплазму, ядро, хромато-фор. Обратите внимание на форму и окраску хроматофора.
  5. Зарисуйте клетку и подпишите названия её частей. Правильность выполнения рисунка проверьте по рисункам учебника.

Вы, наверное, обращали внимание на зелёные налеты в нижней части деревьев, на заборах и т. п. Их образуют приспособившиеся к наземной жизни различные одноклеточные зелёные водоросли (рис. 60). Под микроскопом видны одиночные клетки или группы клеток зелёных водорослей. Единственный источник влаги для этих водорослей — атмосферные осадки (дожди и роса). При недостатке воды или при низких температурах плеврококк и другие наземные водоросли могут проводить часть жизни в состоянии покоя.

Зелёные водоросли на стволе дерева

Рис. 60. Зелёные водоросли на стволе дерева

Многоклеточные зелёные водоросли. У многоклеточных представителей зелёных водорослей тело (слоевище) имеет форму нитей или плоских листовидных образований. В проточных водоёмах часто можно заметить ярко-зелёные скопления шелковистых нитей, прикреплённых к подводным камням и корягам. Это многоклеточная нитчатая зелёная водоросль улотрикс (рис. 61). Его нити состоят из ряда коротких клеток. В цитоплазме каждой из них расположены ядро и хроматофор в виде незамкнутого кольца. Клетки делятся, и нить растёт.

Многоклеточные зелёные водоросли

Рис. 61. Многоклеточные зелёные водоросли

В стоячих и медленно текущих водах часто плавают или оседают на дно скользкие ярко-зелёные комки. Они похожи на вату и образованы скоплениями нитчатой водоросли спирогиры (см. рис. 61). Вытянутые цилиндрические клетки спирогиры покрыты слизью. Внутри клеток — хроматофоры в виде спирально закрученных лент.

Многоклеточные зелёные водоросли живут также в водах морей и океанов. Примером таких водорослей может служить ульва, или морской салат, длиной около 30 см и толщиной всего две клетки (см. рис. 61).

Наиболее сложное строение в этой группе растений имеют харовые водоросли, обитающие в пресноводных водоёмах. Эти многочисленные зелёные водоросли по внешнему виду напоминают хвощи. Харовую водоросль нителлу, или блестянку гибкую, часто выращивают в аквариумах (см. рис. 61).

У харовых имеются образования, которые по форме и по выполняемым функциям напоминают корни, стебли, листья, но по строению они не имеют ничего общего с этими органами высших растений. Например, к грунту они прикрепляются с помощью бесцветных ветвистых нитевидных клеток, которые называют ризоидами (от греческих слов «риза» — корень и «эйдос» — вид).

Бурые водоросли. Бурые водоросли в основном морские растения. Общий внешний признак этих водорослей — желтовато-бурая окраска слоевищ.

Бурые водоросли — многоклеточные растения. Их длина колеблется от микроскопической до гигантской (несколько десятков метров). Слоевища этих водорослей могут быть нитевидными, шаровидными, пластинчатыми, кустообразными. Иногда они содержат воздушные пузыри, удерживающие растение в воде в вертикальном положении. К грунту бурые водоросли прикрепляются ризоидами или дисковидно разросшимся основанием слоевища.

У некоторых бурых водорослей появляются группы клеток, которые можно назвать тканями.

В наших дальневосточных морях и морях Северного Ледовитого океана растёт крупная бурая водоросль ламинария, или морская капуста (рис. 62). В прибрежной полосе Чёрного моря часто встречается бурая водоросль цистозейра (см. рис. 62).

Бурые водоросли

Рис. 62. Бурые водоросли

Красные водоросли. Красные водоросли, или багрянки, — в основном многоклеточные морские растения (рис. 63). Лишь некоторые виды багрянок встречаются в пресных водоёмах. Очень немногие из красных водорослей одноклеточные.

Красные водоросли

Рис. 63. Красные водоросли

Размеры багрянок обычно колеблются от нескольких сантиметров до метра в длину. Но среди них есть и микроскопические формы. В клетках красных водорослей, кроме хлорофилла, содержатся красные и синие пигменты. В зависимости от их сочетания окраска багрянок меняется от ярко-красной до голубовато-зелёной и жёлтой.

Внешне красные водоросли весьма разнообразны: нитевидные, цилиндрические, пластинчатые и кораллопо-добные, в разной мере рассечённые и разветвлённые. Часто они очень красивы и причудливы.

В море красные водоросли встречаются повсеместно в самых разных условиях. Обычно они прикрепляются к скалам, валунам, искусственным сооружениям, а иногда и к другим водорослям. Благодаря тому что красные пигменты способны улавливать даже очень небольшое количество света, багрянки могут расти на значительных глубинах. Их можно встретить даже на глубине 100—200 м. В морях нашей страны широко распространены филлофора, порфира и др.

Читайте:  Как называется высокое растение с красными цветами

Значение водорослей в природе и жизни человека. Водорослями питаются рыбы и другие водные животные. Водоросли поглощают из воды углекислый газ и, как все зелёные растения, выделяют кислород, которым дышат живые организмы, обитающие в воде. Водоросли вырабатывают огромное количество кислорода, который не только растворяется в воде, но и выделяется в атмосферу.

Человек использует морские водоросли в химической промышленности (рис. 64). Из них получают йод, калийные соли, целлюлозу, спирт, уксусную кислоту и другие продукты. Водоросли используют как удобрения и употребляют на корм скоту. Из некоторых видов красных водорослей добывают студенистое вещество агар-агар, необходимое в кондитерской, хлебопекарной, бумажной и текстильной промышленности. На агар-агаре выращивают микроорганизмы для использования их в лабораторных исследованиях.

Значение и использование водорослей

Рис. 64. Значение и использование водорослей

Во многих странах водоросли используют для приготовления разнообразных блюд. Они очень полезны, так как содержат много углеводов, витаминов, богаты иодом.

Особенно часто употребляют в пищу ламинарию (морскую капусту), ульву (морской салат), порфиру и др.

Хламидомонаду, хлореллу и другие одноклеточные зелёные водоросли применяют при биологической очистке сточных вод.

Чрезмерное размножение водорослей, например в оросительных каналах или рыборазводных прудах, может принести вред. Поэтому каналы и водоёмы приходится периодически очищать от этих растений.

Наличие водорослей — необходимое условие для нормальной жизни водоёмов. Если в них сбрасывают нечистоты, химические отходы, металлический лом, гниющую древесину и другие материалы, то это неизбежно ведёт к гибели водорослей, других растений и животных, появлению мёртвых и заражённых водоёмов.

Новые понятия

Водоросли. Хроматофор. Ризоиды. Хламидомонада. Хлорелла. Ламинария

Вопросы

  1. Почему водоросли относят к низшим растениям?
  2. Где обитают зелёные одноклеточные водоросли?
  3. Какое строение имеет хламидомонада?
  4. Где обитают и какое строение имеют зелёные многоклеточные водоросли?
  5. Где обитают и какое строение имеют бурые водоросли?
  6. Где обитают и какое строение имеют красные водоросли?
  7. Что такое слоевище?
  8. Что такое хроматофор?
  9. Что такое ризоиды? Почему их нельзя называть корнями?
  10. Какое значение имеют водоросли в природе?
  11. Как человек использует водоросли?

Подумайте

Почему даже у многоклеточных водорослей, имеющих большие размеры, отсутствует сосудистая система?

Задания для любознательных

Осторожно снимите зелёный налёт с коры нескольких деревьев. Приготовьте микропрепараты и изучите их под микроскопом. Рассмотрите клетки водорослей, образующих зелёный налёт. Постарайтесь установить, одним или несколькими видами водорослей он образован.

Источник

Концепция водорослевых обрастаний на растениях

Юрий, я про "баланс" например из темы "Пушок" каторый вроде бы и исакать знаем как и делаем вроде то что доктор прописал, а почему-то не
срабатывает.
Но и термин "созревшей воды" можно будет обсудить приминительно к водорослям и их появлению либо отсутствию.
В общем думаю, чем больше моментов ключевых найдем и рассмотрим, тем проще будет аквариумисту каторый борется с водорослями
найти подходящий именно для него план действий или бездействий в этой извечной борьбе.

п.с. Спасибо за поддержку!

Концепция водорослевых обрастаний на растениях

Сообщение Andrey (nsk) » 20 июн 2011, 10:50

Концепция водорослевых обрастаний на растениях - 3.jpg

на фото видны листья Sagittaria subulata пораженные водорослью Oedogonium, при посадке листья были без обрастаний,
ближе виден лист Cryptocoryne wendtii var. jahnelii без водорослевых обрастаний, растения находятся рядом в одних и
тех же условиях, в связи с чем так происходит, почему не обрастает криптокорина?

Концепция водорослевых обрастаний на растениях

Сообщение Ю.В. » 20 июн 2011, 11:23

Концепция водорослевых обрастаний на растениях

Сообщение Селитра » 20 июн 2011, 11:59

Концепция водорослевых обрастаний на растениях

Сообщение Andrey (nsk) » 20 июн 2011, 12:44

Концепция водорослевых обрастаний на растениях

Сообщение flicker » 20 июн 2011, 13:00

По поводу избирательности обрастаний: замечено, что при прочих равных условиях водорослями в меньшей степени покрываются быстровегетирующие (здоровые) растения. Процесс роста — не только образование новых клеток, но и замещение ими старых (ороговевших). Если этот процесс замедлен, то на "старых" участках растений процветают водоросли.

По поводу лимитирующего фактора не раз читал и замечал на практике, что лимитирующим фактором должно быть освещение.

Если кто не согласен или я где-то не прав, поправляйте, подискутируем

Концепция водорослевых обрастаний на растениях

Сообщение Andrey (nsk) » 20 июн 2011, 13:47

если нет цели лимитировать рост растений, то лимитирующего фактора может не быть вовсе.
(откорректировал) буду избегать безоговорочных высказываний)

п.с. думается, Ирина имела в виду лимитирующий фактор стабильной работы системы(аквариума) в целом.

Источник