Антиген Аг представляющие клетки Иммунные реакции Классификация имунных реакций Антигены Свойства анти

К крупномолекулярным веществам органической природы не являющимися антигенами относятся

Антигены – это вещества, которые несут признаки генетически чужеродной информации и при введении в организм вызывают развитие специфических иммунологических реакций.

Антигенные вещества представляют собой высокомолекулярные соединения, обладающие определенными свойствами: чужеродностью, антигенностью, иммуногенностью, специфичностью и определенной молекулярной массой. Антигенами могут быть разнообразные вещества белковой природы, а также белки в соединении с липидами и полисахаридами. Антигенными свойствами обладают клетки животного и растительного происхождения, яды животного и растительного происхождения. Антигенными свойствами обладают вирусы, бактерии, микроскопические грибы, простейшие, экзо — и эндотоксины микроорганизмов. Все антигенные вещества имеют ряд общих свойств:

Антигенность – это способность антигена вызывать иммунный ответ. Степень иммунного ответа организма на различные антигены неодинакова, т. е. на каждый антиген вырабатывается неодинаковое количество антител.

Специфичность – это особенность строения веществ, по которой антигены отличаются друг от друга. Ее определяет антигенная детерминанта, т. е. небольшой участок молекулы антигена, который соединяется с выработанным на него антителом.

Иммуногенность — это способность создавать иммунитет. Это понятие относится, главным образом, к микробным антигенам, обеспечивающим создание иммунитета к инфекционным болезням. Антиген, чтобы быть иммуногенным, должен быть чужеродным и иметь достаточно большую молекулярную массу. С увеличением молекулярной массы иммуногенность нарастает. Корпускулярные антигены (бактерии, грибы, эритроциты) более иммуногены, чем растворимые. Среди растворимых антигенов наибольшей иммуногенность обладают высокомолекулярные соединения.

Антигены подразделяют на полноценные и неполноценные. Полноценные антигены вызывают в организме синтез антител или сенсибилизацию лимфоцитов и вступают с ними в реакцию как in vivo, так и in vitro. Для полноценных антигенов характерна строгая специфичность, т. е. они вызывают в организме выработку только специфических антител, вступающих в реакцию только с данным антигеном.

Неполноценные антигены (гаптены) представляют собой сложные углеводы, липиды и другие вещества, не способные вызвать образование антител в организме, но вступающие с ними в специфическую реакцию. Добавление к гаптенам небольшого количества белка придает им свойства полноценного антигена.

Аутоантигены – антигены, образованные из белков собственных тканей, изменивших свои физико-химические свойства под воздействием различных факторов (токсины и ферменты бактерий, лекарственные вещества, ожоги, обморожения, облучение). Такие, измененные белки становятся чужеродными для организма, и организм отвечает выработкой антител, т. е. возникают аутоиммунные заболевания.

Если рассматривать антигенные свойства микроорганизма, то можно отметить, что антигенный состав – это достаточно постоянная характеристика любого микроорганизма. В антигеном комплексе чаще всего встречаются общеродовые антигены (общие для представителей данного рода), группоспецифические (присущие определенной группе), видоспецифические (присущие всем особям данного вида), и штаммоспецифические.

По локализации антигены могут быть поверхностные (К-антигены – антигены клеточной стенки), соматические (О-антигены, локализованы во внутреннем слое клеточной стенки, термостабильны) и жгутиковые (Н-антигены, присутствуют у всех подвижных бактерий, термолабильны). Многие из них активно секретируются клеткой в окружающую среду. В тоже время, существуют гидрофобные антигены, прочно связанные с клеточной стенкой.

Кроме того, патогенные микроорганизмы способны выделять ряд экзотоксинов. Экзотоксины обладают свойствами полноценных антигенов с выраженной неоднородностью в пределах рода и вида. Споры бактериальной клетки также обладают антигенными свойствами: они содержат антиген, общий для вегетативной клетки и споры.

Патогенные микроорганизмы ведут постоянную борьбу с иммунной системой путем изменения структуры поверхностных антигенов. Изменения чаще всего появляются в результате точечных мутаций, в результате появляются варианты существующих антигенов.

Антитела

В процессе эволюции организмы выработали набор защитных приспособлений к патогенным микроорганизмам, включающие неспецифические механизмы, препятствующие проникновению патогенов, вещества неспецифически повреждающие их (лизоцим, комплемент), фагоцитоз и другие клеточные реакции. Вместе с тем, патогенные микроорганизмы тоже научились преодолевать неспецифические барьеры. Поэтому в процессе эволюции появились специфические гуморальные факторы защиты в виде антител и способность организма к выраженному специфическому иммунному ответу.

Антитела – белки, относящиеся к иммуноглобулинам, которые синтезируются лимфоидными и плазматическими клетками в ответ на попадание в организм антигена, обладающими способностью специфически связываться с ним. Антитела составляют более 30% белков сыворотки крови, обеспечивают специфичность гуморального иммунитета благодаря способности связываться только с тем антигеном, который стимулировал их синтез.

Первоначально антитела условно классифицировали по их функциональным свойствам на нейтрализующие, лизирующие и коагулирующие. К нейтрализующим были отнесены антитоксины, антиферменты и вируснейтрализующие лизины. К коагулирующим – агглютинины и преципитины; к лизирующим – гемолитические и комплементсвязывающие антитела. С учетом функциональной способности антител были даны названия серологическим реакциям: агглютинация, гемолиз, лизис, преципитация и др.

В соответствии с Международной классификацией сывороточные белки, несущие функцию антител, получили название иммуноглобулинов (Ig). В зависимости от физикохимических и биологических свойств различают иммуноглобулины классов IgM, IgG, IgA, IgE, IgD.

Читайте:  Изба это объект неживой природы или

Иммуноглобулины – белки с четвертичной структурой, т. е. их молекулы построены из нескольких полипептидных цепей. Молекула каждого класса состоит из четырех полипептидных цепей – двух тяжелых и двух легких, связанных между собой дисульфидными мостиками. Легкие цепи – структура общая для всех классов иммуноглобулинов. Тяжелые цепи имеют характерные структурные особенности, присущие определенному классу, подклассу.

Антитела, входящие в определенные классы иммуноглобулинов, обладают различными физическими химическими, биологическими и антигенными свойствами.

Иммуноглобулины содержат три вида антигенных детерминант: изотипические (одинаковые для каждого представителя данного вида), аллотипические (детерминанты, различные у представителей данного вида) и идиотипические (детерминанты, определяющие индивидуальность данного иммуноглобулина и являющиеся различными у антител одного класса, подкласса). Все указанные антигенные различия определяются с помощью специфических сывороток.

Синтез и динамика образования антител

Антитела вырабатывают плазматические клетки селезенки, лимфатических узлов, костного мозга, пейеровых бляшек. Плазматические клетки (антителопродуценты) происходят из предшественников В-клеток после их контакта с антигеном. Механизм синтеза антител аналогичен синтезу любых белков и происходит на рибосомах. Легкие и тяжелые цепи синтезируются отдельно, затем соединяются на полирибосомах, а окончательная их сборка происходит в пластинчатом комплексе.

Динамика образования антител. При первичном иммунном ответе в антителообразовании различают две фазы: индуктивную (латентную) и продуктивную. Индуктивная фаза – это период от момента парентерального введения антигена до появления антигенреактивных клеток (продолжительность не более суток). В эту фазу происходит пролиферация и дифференцировка лимфоидных клеток в направлении синтеза IgM. Вслед за индуктивной фазой наступает продуктивная фаза антителообразования. В этот период, примерно до 10…15 суток уровень антител резко возрастает, при этом уменьшается число клеток, синтезирующих IgM, и нарастает продукция IgA.

Феномен взаимодействия антиген-антитело.

Знание механизмов взаимодействия антигенов и антител раскрывает сущность многообразных иммунологических процессов и реакций, возникающих в организме под влиянием патогенных и непатогенных факторов.

Реакция между антителом и антигеном протекает в две стадии:

— специфическая — непосредственное соединение активного центра антитела с антигенной детерминантой.

— неспецифическая – вторая стадия, когда, отличающийся плохой растворимостью иммунный комплекс выпадает в осадок. Эта стадия возможна в присутствии раствора электролита и визуально проявляется по разному, в зависимости от физического состояния антигена. Если антигены корпускулярные, то имеет место феномен агглютинации (склеивания различных частиц и клеток). Образующиеся конгломераты выпадают в осадок, при этом клетки морфологически не изменяются, теряя подвижность, они остаются живыми.

Источник

Антигены

Чужеродные вещества, или антигены, представляют собой вещества экзогенного или эндогенного происхождения, которые активируют иммунную систему и вызывают иммунный ответ. Они образуют «молекулы распознавания» — антитела и клеточные рецепторы, которые специфически связываются in vivo или in vitro с соответствующим антигеном.

Антигены — это общий термин, который обычно относится к высокомолекулярным веществам, несущим признаки чужеродной генетической информации, способным стимулировать выработку антител и специфически реагировать с ними.

Антигены и антитела

Каждая клетка, например инфекционный микроорганизм, имеет целый комплекс различных антигенов, против которых образуются многочисленные антитела. Каждое из антител распознает специфический антиген с поверхности микроорганизма, а не клетки в целом.

Свойства антигенов

Антигены обладают четырьмя основными свойствами — чужеродность, специфичность, антигенность, иммуногенность.

Чужеродность

Антигены являются продуктом чужеродного генотипа или измененной генетической информации.

Например: сывороточный белок кролика, введенный кроликам, индуцирует выработку большого количества антител, но не играет роли антигена у крупного рогатого скота. Собственные нормальные клетки организма не вызывают иммунного ответа, потому что они определяются как собственные в ходе эмбрионального развития. Возможно, что собственные клетки организма воспринимаются как чужеродные, когда в них происходят мутации, которые экспрессируют антигены, неизвестные иммунной системе.

Клетки некоторых органов, таких как хрусталик глаза, яички, ткани мозга и щитовидной железы, остаются изолированными от иммунокомпетентных клеток из-за наличия гематоэнцефалических барьеров и не распознаются в течение эмбрионального периода. Это причина, по которой их организму не удается развить терпимость, и они не признаются как свои собственные. В случае травмы, воспаления или другой причины, которая нарушает эти кроветворные барьеры, клетки этих органов воспринимаются как чужеродные и вызывают иммунный ответ. В ходе построения естественной иммунной толерантности возможны ошибки, которые могут привести к иммунному ответу против собственных структур.

Аутоиммунные заболевания являются результатом реакции против собственных антигенов. Эти заболевания являются хроническими из-за постоянной активации иммунной системы. Природные антигены являются биополимерами живых организмов. Мономеры, такие как аминокислоты, моносахариды, дисахариды, нуклеотиды, не являются антигенами. У них есть небольшая молекула со структурой, которая идентична тем же молекулам всех организмов и не воспринимается как чужеродная, потому что они не отражают генетическую уникальность живой системы.

Читайте:  Деятельность современного человека по отношению к природе

Специфичность

Антиген

Специфичность — отражает структурные особенности каждой антигенной молекулы.

Специфичность определяется наличием антигенных детерминант. Ответ антиген-антитело обусловлен распознаванием и повторным связыванием молекул через слабые нековалентные связи. Область контакта с антителом называется паратопом, а область контакта с антигеном — эпитопом. Эпитопы представляют собой небольшие структуры, состоящие из 3-4 аминокислот, моносахаридных остатков и других функциональных групп. Их расположение в антигенах различно, некоторые из которых расположены на поверхности молекулы, а другие появляются после частичного разрушения. Количество эпитопов антигенов определяет их валентность. Большинство из них многовалентные — имеют более двух одинаковых эпитопов.

Эпитопы связываются с паратопом или рецептором Т-клеток. Взаимодействие эпитоп-паратоп эквивалентно блокировке клавиш. Сила ассоциации между антигеном и антителом характеризуется сродством (константой ассоциацией) и авидностью — результатом количества эпитопов и валентности антител. Антиген может иметь мозаику из разных эпитопов или множества идентичных эпитопов. Распознающие молекулы антител или клеточные рецепторы специфически связываются с эпитопом, а не с антигенной молекулой в целом. Обычно эпитоп занимает место на молекуле, соответствующее 8-9 аминокислотам в белке или 5-6 остаткам сахара в полисахаридах. Если один организм реагирует с двумя разными, хотя и близкими антигенами, наблюдается перекрестная реактивность. Это обусловлено структурным сходством эпитопов двух антигенов и может иметь различное сродство антител к ним. Это означает, что нет абсолютной антигенной специфичности.

Антигенность

Антигенность — отражает способность антигена в той или иной степени взаимодействовать с антителами и иммунокомпонентными клетками, образующимися против него. Антигенность является выражением силы вызванного иммунного ответа.

Следовательно, происходит разделение антигенов на сильные антигены, которые в малых дозах при самом первом столкновении с иммунной системой вырабатывают большое количество антител и вызывают сильный иммунный ответ и слабые антигены, которые даже после многократного введения больших доз вызывают слабый иммунный ответ. Антигенность зависит от молекулярной массы, размера и сложности химической структуры. Это может быть изменено искусственно путем добавления или удаления эпитопов.

Источник

Химическая природа антигенов

Из высокомолекулярных соединений биологического происхождения свойствами полноценных антигенов обладают главным образом белки, а также некоторые полисахариды и липополисахариды бактериального происхождения. Например, капсульные полисахариды пневмококка являются антигенами для мышей и человека, но не для кролика и лошадей.

Основными носителями антигенной функции являются белки. Это связано с тем, что именно в структуре белков прежде всего реализуется специфичность работы генома каждого организма. Аминокислоты, моносахара, азотистые основания и другие относительно простые соединения, не говоря уже о химических элементах, которые имеют у всех организмов одинаковую структуру, не обладают признаками чужеродности и не могут поэтому быть антигенами. У разных белков антигенные свойства проявляются в разной степени: наряду с сильными антигенами (микробные экзотоксины, сывороточные белки и др.), есть белки с очень слабой антигенной активностью – гемоглобин, желатин, инсулин и другие низкомолекулярные белки. Низкую антигенную активность инсулина обычно связывают с его небольшой молекулярной массой (менее 6 кД). Однако такие белки, как, например, гемоглобин и актин, имеют большую молекулярную массу (64,5 кД и 50 кД соответственно), но обладают слабыми антигенными свойствами.

В настоящее время полагают, что антигенные свойства белков коррелируют со скоростью их эволюции. Выполняя сходные функции у разных организмов, такие белки, как инсулин, гемоглобин, обладают большим структурным сходством. Лишь инсулин морской свинки отличается от инсулина других млекопитающих по 16 – 18 аминокислотным остаткам. В то же время только морские свинки способны вырабатывать антитела к гетерологичному инсулину.

Таким образом, чем больше различий в аминокислотных последовательностях у белка-антигена по сравнению с аналогичным белком хозяина, тем больше выражена у него способность индуцировать синтез антител, и наоборот, чем более эволюционно консервативен белок, тем слабее у него антигенные качества. К числу наиболее консервативных белков относится семейство гистонов IV. За 1,5 млрд лет в них произошли всего 2 аминокислотные замены. Способность индуцировать синтез антител у гистонов IV не обнаружена.

Антигенность полисахаридов и липополисахаридов имеет такое же происхождение, как и антигенность белков, т. е. обусловлена необычностью структуры, сообщающей им свойства чужеродности. Например, антигенность полисахаридов сальмонелл группы А связана с наличием в их составе паратозы (3,6-ди-дезокси-глюкозы), группы В – абеквозы (3,6-ди-дезокси-галактозы) и т. д. Простые сахара и олигосахариды обладают свойствами гаптенов, т. е. их можно превратить в антиген путем присоединения к белкам. Многочисленные исследования антигенных свойств нуклеиновых кислот дали противоречивые результаты. По-видимому, лишь высокополимерным препаратам нуклеиновых кислот присущи антигенные свойства. Антигенные свойства доказаны для ДНК Т-четных фагов (Т2, Т4, Т6); в ее составе содержатся остатки 5-оксиметилцитозина, к некоторым из них присоединены 1 – 2 остатка глюкозы. Негликозилированная ДНК не способна индуцировать образование антител. Сыворотка крови людей, страдающих системной красной волчанкой, дает реакции преципитации с ДНК различного происхождения. Это связано с наличием в сыворотке крови больных антител к ДНК. Антитела, реагирующие с РНК, удается получить, используя в качестве антигена рибосомы.

Читайте:  Презентация quot Человек и природа Проблемы экологии quot по обществознанию проект доклад

Жирные кислоты, а также триглицериды и другие чистые липиды свойствами полноценных антигенов не обладают. Некоторые классы липидов могут быть составной частью молекулы гаптена. Помимо липидов, связанных ковалентной связью с белками, только два класса липидов, содержащиеся в живых тканях, функционируют как гаптены: фосфатиды и гликосфинголипиды. По крайней мере пять хорошо охарактеризованных фосфолипидов обладают свойствами гаптенов: кардиолипин и четыре фосфатидил-инозитол-олигоманнозида, выделенных из туберкулезных бактерий. Липиды обладают способностью усиливать иммуногенность других антигенов, поэтому их используют в качестве адъювантов (англ. adjuvant – помощник, полезный). Применению адъювантов во многом способствовали работы Дж. Фрейнда. В качестве адъюванта Дж. Фрейнд использовал смесь минерального масла с нейтральным детергентом для создания стабильных эмульсий водных растворов антигенов. Добавление к этой эмульсии убитых туберкулезных палочек повышает ее адъювантное действие («полный адъювант Фрейнда»). Применение адъювантов дает хороший эффект при иммунизации низкомолекулярными растворимыми антигенами. Высокомолекулярные антигены в адъювантах практически не нуждаются. По-видимому, основная роль адъювантов состоит в том, что они служат носителями для растворимых антигенов, благодаря чему последние становятся доступными действию фагоцитов. Кроме того, адъюванты вызывают воспалительную реакцию на месте введения, что также способствует фагоцитозу антигенов. Липиды (в основном в виде фосфолипидов) входят в состав эндотоксинов и усиливают их иммуногенность.

Источник



К крупномолекулярным веществам органической природы не являющимися антигенами относятся

Антиген ( Аг ) представляющие клетки. Иммунные реакции. Классификация имунных реакций. Антигены. Свойства антигенов. Структура антигенов ( Аг ). Валентность Аг.

Важную роль в индукции и регуляции иммунного ответа играют мононуклеарные фагоциты. Участие макрофагов в иммунных реакциях включает неспецифическое поглощение Аг, их «переработку» (то есть расщепление на меньшие фрагменты) и представление Аг Т-лимфоцитам, образование ИЛ-1, а также других цитокинов (см. табл. 10-7). Помимо макрофагов, представлять Аг способны В-лимфоциты, фолликулярные клетки лимфатических узлов и селезёнки, клетки Лангерханса кожи и воздухоносных путей, М-клетки лимфатических фолликулов пищеварительного тракта, дендритные эпителиальные клетки вилочковой железы. Наряду с нейтрофилами и эозинофилами, макрофаги участвуют в антителозависимом клеточно-опосредованном цитолизе (имеют поверхностный рецептор к Fc-фрагменту IgG, представляющий CD 16).

Иммунные реакции. Классификация имунных реакций

Большинство иммунных реакций требует взаимодействия Аг-распознающих, Аг-представляющих, эффекторных и регуляторных клеток. Иммунные реакции традиционно разделяют на гуморальные (реализуются циркулирующими в средах организма AT) и клеточные (реализуются при непосредственном контакте иммунокомпетентных клеток). Вместе с тем все иммунокомпетен-тные клетки — компоненты единой иммунной системы. Поэтому такое разделение носит условный характер, тем более, что AT синтезируются клетками (плазмоцитами), а Т-лимфоциты проявляют свою активность через различные растворимые факторы (цитокины и хемокины).

Антиген ( Аг ) представляющие клетки. Иммунные реакции. Классификация имунных реакций. Антигены. Свойства антигенов

Антигены. Свойства антигенов. Структура антигенов ( Аг )

Антигены — вещества различного происхождения, несущие признаки генетической чужеродное™ и вызывающие развитие иммунных реакций (гуморальных, клеточных, состояние иммунной толерантности, индуцирование иммунной памяти). Свойства Аг определяются комплексом признаков: иммуногенность, антигенность, специфичность, чужеродность.

Иммуногенность — способность индуцировать иммунный ответ.
Антигенность — способность Аг избирательно реагировать со специфичными к нему AT или Аг-распознающими рецепторами лимфоцитов. С понятием «антигенность» связан другой термин «чужеродность»: без чужеродности нет антигенности применительно к конкретному организму. Например, альбумины мыши не проявляют антигенные свойства по отношению к другим мышам, но являются Аг для морской свинки.
Специфичность — структурные особенности, отличающие один Аг от другого.

Способностью вызывать развитие иммунного ответа и определять его специфичность обладает фрагмент молекулы Агантигенная детерминанта (эпитоп), избирательно реагирующая с Аг-распознающими рецепторами и AT. Антигенные детерминанты располагаются в областях Аг, обращенных к его микроокружению.

Эпитоп — наименьшая распознаваемая единица Аг; молекула Аг может иметь несколько эпитопов, то есть быть поливалентной. Чем сложнее молекула Аг и чем больше у неё эпитопов, тем больше вероятность развития иммунного ответа. Структура многих антигенных детерминант известна. Например, в полипептидной последовательности эпитопом может быть фрагмент из 7-8 аминокислотных остатков; свойства антигенности и специфичности определяются также пространственной конфигурацией фрагмента.

Моноклональные AT специфически распознают только одну Аг-детерминанту и связываются с ней. Поликлональные AT, как правило, распознают несколько антигенных детерминант в составе Аг.

Антигены. Свойства антигенов. Структура антигенов ( Аг ). Валентность Аг.

Валентность Аг

Белки содержат несколько Аг-детерминант. Количество молекул AT, связывающих все эпитопы, определяет валентность Аг (возрастает пропорционально увеличению молекулярной массы белковой молекулы).

Источник